--- license: mit base_model: Amna100/PreTraining-MLM tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/lvieenf2) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/fgis28rc) # fold_1 This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0113 - Precision: 0.8172 - Recall: 0.5823 - F1: 0.6801 - Accuracy: 0.9993 - Roc Auc: 0.9933 - Pr Auc: 0.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:| | 0.0326 | 1.0 | 632 | 0.0138 | 0.6507 | 0.4668 | 0.5436 | 0.9991 | 0.9909 | 0.9998 | | 0.0116 | 2.0 | 1264 | 0.0113 | 0.8172 | 0.5823 | 0.6801 | 0.9993 | 0.9933 | 0.9998 | | 0.0071 | 3.0 | 1896 | 0.0131 | 0.7896 | 0.5995 | 0.6816 | 0.9993 | 0.9915 | 0.9998 | | 0.0023 | 4.0 | 2528 | 0.0165 | 0.6275 | 0.6953 | 0.6597 | 0.9991 | 0.9899 | 0.9998 | | 0.0013 | 5.0 | 3160 | 0.0173 | 0.7465 | 0.6585 | 0.6997 | 0.9993 | 0.9827 | 0.9996 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1