--- license: mit base_model: Amna100/PreTraining-MLM tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/rw6sjeap) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/g4pyaj7k) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/t4il24wd) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/qf2ywrxq) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/9xmjfnoc) # fold_1 This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0113 - Precision: 0.7155 - Recall: 0.7233 - F1: 0.7194 - Accuracy: 0.9993 - Roc Auc: 0.9952 - Pr Auc: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:| | 0.0241 | 1.0 | 632 | 0.0123 | 0.6317 | 0.6427 | 0.6371 | 0.9991 | 0.9958 | 0.9999 | | 0.0098 | 2.0 | 1264 | 0.0114 | 0.8436 | 0.6580 | 0.7393 | 0.9994 | 0.9946 | 0.9998 | | 0.0062 | 3.0 | 1896 | 0.0113 | 0.7155 | 0.7233 | 0.7194 | 0.9993 | 0.9952 | 0.9999 | | 0.0021 | 4.0 | 2528 | 0.0132 | 0.7990 | 0.6841 | 0.7371 | 0.9993 | 0.9944 | 0.9998 | | 0.0013 | 5.0 | 3160 | 0.0145 | 0.7783 | 0.7037 | 0.7391 | 0.9993 | 0.9956 | 0.9998 | | 0.001 | 6.0 | 3792 | 0.0159 | 0.7730 | 0.7495 | 0.7611 | 0.9994 | 0.9958 | 0.9998 | | 0.0004 | 7.0 | 4424 | 0.0143 | 0.7104 | 0.7908 | 0.7485 | 0.9993 | 0.9964 | 0.9999 | | 0.0002 | 8.0 | 5056 | 0.0173 | 0.8005 | 0.7255 | 0.7611 | 0.9994 | 0.9951 | 0.9999 | | 0.0002 | 9.0 | 5688 | 0.0176 | 0.7981 | 0.7233 | 0.7589 | 0.9993 | 0.9948 | 0.9999 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1