---
license: mit
base_model: Amna100/PreTraining-MLM
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: fold_2
results: []
---
[](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/rw6sjeap)
[](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/g4pyaj7k)
[](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/t4il24wd)
[](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/qf2ywrxq)
[](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/9xmjfnoc)
[](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/vp363qmp)
# fold_2
This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0100
- Precision: 0.7190
- Recall: 0.7
- F1: 0.7094
- Accuracy: 0.9995
- Roc Auc: 0.9959
- Pr Auc: 0.9999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:|
| 0.026 | 1.0 | 632 | 0.0136 | 0.4503 | 0.7059 | 0.5498 | 0.9989 | 0.9956 | 0.9999 |
| 0.0109 | 2.0 | 1264 | 0.0104 | 0.7270 | 0.6029 | 0.6592 | 0.9994 | 0.9951 | 0.9999 |
| 0.0063 | 3.0 | 1896 | 0.0100 | 0.7190 | 0.7 | 0.7094 | 0.9995 | 0.9959 | 0.9999 |
| 0.0027 | 4.0 | 2528 | 0.0113 | 0.6872 | 0.7235 | 0.7049 | 0.9994 | 0.9942 | 0.9999 |
| 0.0012 | 5.0 | 3160 | 0.0145 | 0.8194 | 0.5471 | 0.6561 | 0.9994 | 0.9924 | 0.9999 |
| 0.0015 | 6.0 | 3792 | 0.0131 | 0.6952 | 0.7176 | 0.7062 | 0.9994 | 0.9935 | 0.9999 |
| 0.0008 | 7.0 | 4424 | 0.0139 | 0.7604 | 0.7 | 0.7289 | 0.9995 | 0.9925 | 0.9999 |
| 0.0002 | 8.0 | 5056 | 0.0163 | 0.7418 | 0.6676 | 0.7028 | 0.9994 | 0.9907 | 0.9998 |
| 0.0001 | 9.0 | 5688 | 0.0163 | 0.6551 | 0.7206 | 0.6863 | 0.9994 | 0.9927 | 0.9999 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1