--- license: mit base_model: austin/Austin-MeDeBERTa tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_2 results: [] --- # fold_2 This model is a fine-tuned version of [austin/Austin-MeDeBERTa](https://huggingface.co/austin/Austin-MeDeBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0102 - Precision: 0.6842 - Recall: 0.7772 - F1: 0.7277 - Accuracy: 0.9969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0362 | 1.0 | 708 | 0.0109 | 0.6517 | 0.6304 | 0.6409 | 0.9963 | | 0.0087 | 2.0 | 1416 | 0.0092 | 0.6618 | 0.7337 | 0.6959 | 0.9968 | | 0.0029 | 3.0 | 2124 | 0.0102 | 0.6842 | 0.7772 | 0.7277 | 0.9969 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2