--- license: mit base_model: Amna100/PreTraining-MLM tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_2 results: [] --- # fold_2 This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0099 - Precision: 0.7059 - Recall: 0.7018 - F1: 0.7038 - Accuracy: 0.9974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0278 | 1.0 | 635 | 0.0115 | 0.7523 | 0.4795 | 0.5857 | 0.9966 | | 0.0084 | 2.0 | 1270 | 0.0091 | 0.7118 | 0.7222 | 0.7170 | 0.9974 | | 0.0057 | 3.0 | 1905 | 0.0099 | 0.7059 | 0.7018 | 0.7038 | 0.9974 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0