--- license: mit base_model: Amna100/PreTraining-MLM tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_3 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-change2/runs/zkyqf4w8) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-change2/runs/n6lnsbeg) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-change2/runs/k9jhon43) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-change2/runs/67sviuwh) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-change2/runs/e4zmtw0z) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-change2/runs/ykmsii48) # fold_3 This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0104 - Precision: 0.6792 - Recall: 0.5870 - F1: 0.6297 - Accuracy: 0.9993 - Roc Auc: 0.9967 - Pr Auc: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:| | 0.0252 | 1.0 | 711 | 0.0159 | 0.4538 | 0.6413 | 0.5315 | 0.9988 | 0.9944 | 0.9998 | | 0.0095 | 2.0 | 1422 | 0.0104 | 0.6792 | 0.5870 | 0.6297 | 0.9993 | 0.9967 | 0.9999 | | 0.003 | 3.0 | 2133 | 0.0106 | 0.6432 | 0.6957 | 0.6684 | 0.9993 | 0.9973 | 0.9999 | | 0.0024 | 4.0 | 2844 | 0.0126 | 0.7006 | 0.6739 | 0.6870 | 0.9994 | 0.9960 | 0.9999 | | 0.0004 | 5.0 | 3555 | 0.0148 | 0.7239 | 0.6413 | 0.6801 | 0.9994 | 0.9954 | 0.9999 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1