---
license: mit
base_model: Amna100/PreTraining-MLM
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: fold_3
results: []
---
[](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/lvieenf2)
[](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/fgis28rc)
[](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/9tw0vsla)
[](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/ccjl3n87)
# fold_3
This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0107
- Precision: 0.7923
- Recall: 0.6297
- F1: 0.7017
- Accuracy: 0.9993
- Roc Auc: 0.9951
- Pr Auc: 0.9999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:|
| 0.0275 | 1.0 | 632 | 0.0138 | 0.6206 | 0.4976 | 0.5524 | 0.9991 | 0.9926 | 0.9998 |
| 0.0096 | 2.0 | 1264 | 0.0136 | 0.5756 | 0.7358 | 0.6460 | 0.9991 | 0.9958 | 0.9998 |
| 0.006 | 3.0 | 1896 | 0.0107 | 0.7923 | 0.6297 | 0.7017 | 0.9993 | 0.9951 | 0.9999 |
| 0.0023 | 4.0 | 2528 | 0.0137 | 0.7813 | 0.6910 | 0.7334 | 0.9994 | 0.9898 | 0.9998 |
| 0.0011 | 5.0 | 3160 | 0.0141 | 0.7978 | 0.6887 | 0.7392 | 0.9994 | 0.9943 | 0.9999 |
| 0.001 | 6.0 | 3792 | 0.0159 | 0.7812 | 0.7075 | 0.7426 | 0.9993 | 0.9865 | 0.9998 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1