--- license: mit base_model: Amna100/PreTraining-MLM tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_3 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/lvieenf2) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/fgis28rc) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/9tw0vsla) [Visualize in Weights & Biases](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/ccjl3n87) # fold_3 This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0107 - Precision: 0.7923 - Recall: 0.6297 - F1: 0.7017 - Accuracy: 0.9993 - Roc Auc: 0.9951 - Pr Auc: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:| | 0.0275 | 1.0 | 632 | 0.0138 | 0.6206 | 0.4976 | 0.5524 | 0.9991 | 0.9926 | 0.9998 | | 0.0096 | 2.0 | 1264 | 0.0136 | 0.5756 | 0.7358 | 0.6460 | 0.9991 | 0.9958 | 0.9998 | | 0.006 | 3.0 | 1896 | 0.0107 | 0.7923 | 0.6297 | 0.7017 | 0.9993 | 0.9951 | 0.9999 | | 0.0023 | 4.0 | 2528 | 0.0137 | 0.7813 | 0.6910 | 0.7334 | 0.9994 | 0.9898 | 0.9998 | | 0.0011 | 5.0 | 3160 | 0.0141 | 0.7978 | 0.6887 | 0.7392 | 0.9994 | 0.9943 | 0.9999 | | 0.001 | 6.0 | 3792 | 0.0159 | 0.7812 | 0.7075 | 0.7426 | 0.9993 | 0.9865 | 0.9998 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1