--- license: mit base_model: Amna100/PreTraining-MLM tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_3 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/rw6sjeap) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/g4pyaj7k) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/t4il24wd) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/qf2ywrxq) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/9xmjfnoc) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/vp363qmp) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/10xzvwgi) # fold_3 This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0125 - Precision: 0.6887 - Recall: 0.6744 - F1: 0.6814 - Accuracy: 0.9992 - Roc Auc: 0.9939 - Pr Auc: 0.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:| | 0.0286 | 1.0 | 632 | 0.0159 | 0.5908 | 0.5035 | 0.5436 | 0.9988 | 0.9931 | 0.9998 | | 0.0115 | 2.0 | 1264 | 0.0125 | 0.6887 | 0.6744 | 0.6814 | 0.9992 | 0.9939 | 0.9998 | | 0.0079 | 3.0 | 1896 | 0.0170 | 0.8419 | 0.5289 | 0.6496 | 0.9992 | 0.9859 | 0.9995 | | 0.0035 | 4.0 | 2528 | 0.0150 | 0.7146 | 0.7344 | 0.7244 | 0.9992 | 0.9903 | 0.9997 | | 0.002 | 5.0 | 3160 | 0.0166 | 0.6471 | 0.7621 | 0.6999 | 0.9991 | 0.9917 | 0.9997 | | 0.0017 | 6.0 | 3792 | 0.0196 | 0.8300 | 0.6651 | 0.7385 | 0.9993 | 0.9865 | 0.9995 | | 0.0012 | 7.0 | 4424 | 0.0175 | 0.7143 | 0.7621 | 0.7374 | 0.9993 | 0.9920 | 0.9997 | | 0.0004 | 8.0 | 5056 | 0.0176 | 0.7262 | 0.7413 | 0.7337 | 0.9992 | 0.9920 | 0.9997 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1