Amna100 commited on
Commit
a89faf2
1 Parent(s): 5a30700

End of training

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: Amna100/PreTraining-MLM
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: fold_4
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # fold_4
20
+
21
+ This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0115
24
+ - Precision: 0.7679
25
+ - Recall: 0.7116
26
+ - F1: 0.7387
27
+ - Accuracy: 0.9972
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 5
48
+ - eval_batch_size: 5
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.0287 | 1.0 | 636 | 0.0124 | 0.6534 | 0.5839 | 0.6167 | 0.9963 |
59
+ | 0.01 | 2.0 | 1272 | 0.0115 | 0.7736 | 0.6383 | 0.6995 | 0.9968 |
60
+ | 0.0062 | 3.0 | 1908 | 0.0115 | 0.7679 | 0.7116 | 0.7387 | 0.9972 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.37.0.dev0
66
+ - Pytorch 2.1.0+cu121
67
+ - Datasets 2.16.1
68
+ - Tokenizers 0.15.0