--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification language: - de --- # AndreasBlombach/setfit_schwurpert_train_desc This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. The base model is [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It has been finetuned on a small dataset of manually annotated German Telegram posts containing different conspiracy narratives and misinformation. See [our GitHub repository](https://github.com/fau-klue/infodemic) for more information. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("AndreasBlombach/setfit_schwurpert_train_desc") # Run inference preds = model(["Die Corona-Zahlen sind erstunken und erlogen.", "Ach wenn alles an Kriminellen eingesammelt ist brauchen wir auch\"Corona\" nicht mehr...aber😎 Vertraut dem Plan und bleibt ohne Angst..."]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```