from typing import Dict, List, Any from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import torch class EndpointHandler(): def __init__(self, path=""): tokenizer = AutoTokenizer.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) self.pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2, temperature=0.1, device_map="auto", ) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str`) date (:obj: `str`) Return: A :obj:`list` | `dict`: will be serialized and returned """ # get inputs inputs = data.get("inputs",data) date = data.get("date", None) prompt = f"""Clasifica el texto con la etiquta "1" si hay ideaciĆ³n/comportamiento suicida y la etiqueta "0" en otro caso, retorna la respuesta como la correspondiente etiqueta. texto: {inputs} etiqueta: """.strip() # run normal prediction outputs = self.pipeline(prompt) pred = outputs[0]["generated_text"].split("etiqueta: ")[-1].strip() label = "intencion_suicida" if pred == "1" else "no_intencion_suicida" return [{"input": inputs , "clasiffication": pred, "label" : label }]