File size: 3,846 Bytes
d2a2b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c9e67d
d2a2b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: openrail
library_name: peft
tags:
- generated_from_trainer
base_model: VietAI/envit5-translation
metrics:
- bleu
model-index:
- name: envit5-MedEV
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# envit5-MedEV

This model is a fine-tuned version of [VietAI/envit5-translation](https://huggingface.co/VietAI/envit5-translation) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0795
- Bleu: 44.8343  ->   47.903 on MedEV test set

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Bleu    |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 33.2165       | 0.1314 | 700   | 0.5906          | 0.0653  |
| 0.4083        | 0.2628 | 1400  | 0.1096          | 13.8606 |
| 0.114         | 0.3942 | 2100  | 0.0918          | 14.7674 |
| 0.1027        | 0.5256 | 2800  | 0.0890          | 14.9410 |
| 0.0997        | 0.6571 | 3500  | 0.0873          | 15.0741 |
| 0.0973        | 0.7885 | 4200  | 0.0861          | 15.1717 |
| 0.0964        | 0.9199 | 4900  | 0.0852          | 15.2362 |
| 0.0949        | 1.0513 | 5600  | 0.0844          | 15.3131 |
| 0.0947        | 1.1827 | 6300  | 0.0838          | 15.3815 |
| 0.0937        | 1.3141 | 7000  | 0.0832          | 15.5075 |
| 0.0935        | 1.4455 | 7700  | 0.0827          | 15.5932 |
| 0.092         | 1.5769 | 8400  | 0.0822          | 15.6434 |
| 0.0924        | 1.7084 | 9100  | 0.0818          | 15.7233 |
| 0.0915        | 1.8398 | 9800  | 0.0815          | 15.8051 |
| 0.0915        | 1.9712 | 10500 | 0.0812          | 15.8279 |
| 0.0906        | 2.1026 | 11200 | 0.0809          | 15.8559 |
| 0.0904        | 2.2340 | 11900 | 0.0807          | 15.9008 |
| 0.0908        | 2.3654 | 12600 | 0.0805          | 15.8917 |
| 0.0904        | 2.4968 | 13300 | 0.0803          | 15.9352 |
| 0.0895        | 2.6282 | 14000 | 0.0802          | 15.9442 |
| 0.0896        | 2.7597 | 14700 | 0.0800          | 15.9677 |
| 0.0894        | 2.8911 | 15400 | 0.0800          | 15.9459 |
| 0.09          | 3.0225 | 16100 | 0.0799          | 15.9746 |
| 0.0895        | 3.1539 | 16800 | 0.0798          | 16.0154 |
| 0.0892        | 3.2853 | 17500 | 0.0797          | 15.9976 |
| 0.0896        | 3.4167 | 18200 | 0.0797          | 16.0193 |
| 0.0893        | 3.5481 | 18900 | 0.0796          | 16.0179 |
| 0.0888        | 3.6795 | 19600 | 0.0796          | 16.0510 |
| 0.0887        | 3.8110 | 20300 | 0.0796          | 16.0226 |
| 0.0891        | 3.9424 | 21000 | 0.0796          | 16.0277 |
| 0.0892        | 4.0738 | 21700 | 0.0796          | 16.0302 |
| 0.0892        | 4.2052 | 22400 | 0.0795          | 16.0425 |
| 0.0886        | 4.3366 | 23100 | 0.0795          | 16.0452 |
| 0.0889        | 4.4680 | 23800 | 0.0795          | 16.0518 |
| 0.0888        | 4.5994 | 24500 | 0.0795          | 16.0397 |
| 0.0893        | 4.7308 | 25200 | 0.0795          | 16.0450 |
| 0.0889        | 4.8623 | 25900 | 0.0795          | 16.0497 |
| 0.0887        | 4.9937 | 26600 | 0.0795          | 16.0497 |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1