Update README.md
Browse files
README.md
CHANGED
@@ -14,39 +14,36 @@ tags:
|
|
14 |
- emotions-classifier
|
15 |
---
|
16 |
|
17 |
-
#
|
18 |
|
19 |
-
This is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) for emotion detection
|
20 |
|
21 |
-
##
|
22 |
|
23 |
-
Fast Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa V3 Small model.
|
24 |
|
25 |
-
##
|
26 |
|
27 |
-
-
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
##
|
34 |
-
- π Anger
|
35 |
-
- π€’ Disgust
|
36 |
-
- π¨ Fear
|
37 |
-
- π Joy
|
38 |
-
- π’ Sadness
|
39 |
-
- π² Surprise
|
40 |
-
|
41 |
-
|
42 |
-
## π Usage
|
43 |
-
|
44 |
-
You can use this model directly with python package or the Hugging Face `transformers` library:
|
45 |
|
|
|
46 |
|
47 |
### Installation
|
48 |
|
49 |
-
|
50 |
|
51 |
```bash
|
52 |
pip install emotionclassifier
|
@@ -90,7 +87,7 @@ result = classifier.predict("I am very happy today!")
|
|
90 |
plot_emotion_distribution(result['probabilities'], classifier.labels.values())
|
91 |
```
|
92 |
|
93 |
-
### CLI Usage
|
94 |
|
95 |
You can also use the package from the command line:
|
96 |
|
@@ -135,7 +132,7 @@ Fine-tune a pre-trained model on your own dataset:
|
|
135 |
```python
|
136 |
from emotionclassifier.fine_tune import fine_tune_model
|
137 |
|
138 |
-
# Define your
|
139 |
train_dataset = ...
|
140 |
val_dataset = ...
|
141 |
|
@@ -143,7 +140,7 @@ val_dataset = ...
|
|
143 |
fine_tune_model(classifier.model, classifier.tokenizer, train_dataset, val_dataset, output_dir='fine_tuned_model')
|
144 |
```
|
145 |
|
146 |
-
### Using transformers
|
147 |
|
148 |
```python
|
149 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
@@ -165,42 +162,39 @@ emotion = predict_emotion(text)
|
|
165 |
print("Detected Emotion:", emotion)
|
166 |
```
|
167 |
|
168 |
-
##
|
169 |
|
170 |
The model was trained using the following parameters:
|
171 |
|
172 |
-
-
|
173 |
-
-
|
174 |
-
-
|
175 |
-
-
|
176 |
|
177 |
-
###
|
178 |
|
179 |
-
-
|
180 |
-
-
|
181 |
-
-
|
182 |
-
-
|
183 |
-
-
|
184 |
-
-
|
185 |
-
-
|
186 |
-
-
|
187 |
-
-
|
188 |
|
|
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
| Parameter | Value |
|
194 |
-
|-------------------------------|---------------------------|
|
195 |
| Model Name | microsoft/deberta-v3-small |
|
196 |
-
| Training Dataset | dair-ai/emotion
|
197 |
| Number of Training Epochs | 20 |
|
198 |
-
| Learning Rate | 2e-5
|
199 |
-
| Per Device Train Batch Size | 4
|
200 |
-
| Evaluation Strategy | Epoch
|
201 |
-
| Best Model Accuracy | 94.6%
|
202 |
-
|
203 |
|
204 |
-
##
|
205 |
|
206 |
This model is licensed under the [MIT License](LICENSE).
|
|
|
14 |
- emotions-classifier
|
15 |
---
|
16 |
|
17 |
+
# Fast Emotion-X: Fine-tuned DeBERTa V3 Small Based Emotion Detection
|
18 |
|
19 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) for emotion detection using the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.
|
20 |
|
21 |
+
## Overview
|
22 |
|
23 |
+
Fast Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa V3 Small model. It is designed to accurately classify text into one of six emotional categories. Leveraging the robust capabilities of DeBERTa, this model is fine-tuned on a comprehensive emotion dataset, ensuring high accuracy and reliability.
|
24 |
|
25 |
+
## Model Details
|
26 |
|
27 |
+
- **Model Name:** `AnkitAI/deberta-v3-small-base-emotions-classifier`
|
28 |
+
- **Base Model:** `microsoft/deberta-v3-small`
|
29 |
+
- **Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
|
30 |
+
- **Fine-tuning:** The model is fine-tuned for emotion detection with a classification head for six emotional categories: anger, disgust, fear, joy, sadness, and surprise.
|
31 |
|
32 |
+
## Emotion Labels
|
33 |
+
- Anger
|
34 |
+
- Disgust
|
35 |
+
- Fear
|
36 |
+
- Joy
|
37 |
+
- Sadness
|
38 |
+
- Surprise
|
39 |
|
40 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
You can use this model directly with the provided Python package or the Hugging Face `transformers` library.
|
43 |
|
44 |
### Installation
|
45 |
|
46 |
+
Install the package using pip:
|
47 |
|
48 |
```bash
|
49 |
pip install emotionclassifier
|
|
|
87 |
plot_emotion_distribution(result['probabilities'], classifier.labels.values())
|
88 |
```
|
89 |
|
90 |
+
### Command-Line Interface (CLI) Usage
|
91 |
|
92 |
You can also use the package from the command line:
|
93 |
|
|
|
132 |
```python
|
133 |
from emotionclassifier.fine_tune import fine_tune_model
|
134 |
|
135 |
+
# Define your training and validation datasets
|
136 |
train_dataset = ...
|
137 |
val_dataset = ...
|
138 |
|
|
|
140 |
fine_tune_model(classifier.model, classifier.tokenizer, train_dataset, val_dataset, output_dir='fine_tuned_model')
|
141 |
```
|
142 |
|
143 |
+
### Using transformers Library
|
144 |
|
145 |
```python
|
146 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
162 |
print("Detected Emotion:", emotion)
|
163 |
```
|
164 |
|
165 |
+
## Training
|
166 |
|
167 |
The model was trained using the following parameters:
|
168 |
|
169 |
+
- **Learning Rate:** 2e-5
|
170 |
+
- **Batch Size:** 4
|
171 |
+
- **Weight Decay:** 0.01
|
172 |
+
- **Evaluation Strategy:** Epoch
|
173 |
|
174 |
+
### Training Details
|
175 |
|
176 |
+
- **Evaluation Loss:** 0.0858
|
177 |
+
- **Evaluation Runtime:** 110070.6349 seconds
|
178 |
+
- **Evaluation Samples/Second:** 78.495
|
179 |
+
- **Evaluation Steps/Second:** 2.453
|
180 |
+
- **Training Loss:** 0.1049
|
181 |
+
- **Evaluation Accuracy:** 94.6%
|
182 |
+
- **Evaluation Precision:** 94.8%
|
183 |
+
- **Evaluation Recall:** 94.5%
|
184 |
+
- **Evaluation F1 Score:** 94.7%
|
185 |
|
186 |
+
## Model Card Data
|
187 |
|
188 |
+
| Parameter | Value |
|
189 |
+
|-------------------------------|----------------------------|
|
|
|
|
|
|
|
190 |
| Model Name | microsoft/deberta-v3-small |
|
191 |
+
| Training Dataset | dair-ai/emotion |
|
192 |
| Number of Training Epochs | 20 |
|
193 |
+
| Learning Rate | 2e-5 |
|
194 |
+
| Per Device Train Batch Size | 4 |
|
195 |
+
| Evaluation Strategy | Epoch |
|
196 |
+
| Best Model Accuracy | 94.6% |
|
|
|
197 |
|
198 |
+
## License
|
199 |
|
200 |
This model is licensed under the [MIT License](LICENSE).
|