Antoine101 commited on
Commit
936d32b
1 Parent(s): 51b64d8

End of training

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: ntu-spml/distilhubert
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - marsyas/gtzan
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: distilhubert-finetuned-gtzan
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: GTZAN
19
+ type: marsyas/gtzan
20
+ config: all
21
+ split: train
22
+ args: all
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.82
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # distilhubert-finetuned-gtzan
33
+
34
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.6659
37
+ - Accuracy: 0.82
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.9399 | 1.0 | 113 | 1.8990 | 0.52 |
71
+ | 1.1827 | 2.0 | 226 | 1.2796 | 0.63 |
72
+ | 0.9971 | 3.0 | 339 | 1.0439 | 0.68 |
73
+ | 0.6898 | 4.0 | 452 | 0.8985 | 0.76 |
74
+ | 0.5038 | 5.0 | 565 | 0.7509 | 0.81 |
75
+ | 0.4896 | 6.0 | 678 | 0.7412 | 0.81 |
76
+ | 0.3013 | 7.0 | 791 | 0.6883 | 0.81 |
77
+ | 0.1222 | 8.0 | 904 | 0.7308 | 0.77 |
78
+ | 0.2297 | 9.0 | 1017 | 0.6878 | 0.8 |
79
+ | 0.1253 | 10.0 | 1130 | 0.6659 | 0.82 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.46.2
85
+ - Pytorch 2.5.1+cu121
86
+ - Datasets 3.1.0
87
+ - Tokenizers 0.20.3