File size: 2,421 Bytes
d762857
6860872
 
 
f9e0d40
 
6860872
 
 
d762857
 
6860872
 
d762857
6860872
d762857
6860872
 
 
 
d762857
6860872
d762857
6860872
d762857
6860872
d762857
6860872
d762857
6860872
d762857
6860872
d762857
6860872
d762857
6860872
d762857
6860872
 
 
 
 
 
 
 
d762857
6860872
d762857
6860872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d762857
 
6860872
d762857
6860872
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: Ammar-alhaj-ali/arabic-MARBERT-sentiment
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: unfortified_marbert2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# unfortified_marbert2

This model is a fine-tuned version of [Ammar-alhaj-ali/arabic-MARBERT-sentiment](https://huggingface.co/Ammar-alhaj-ali/arabic-MARBERT-sentiment) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1953
- Accuracy: 0.91

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.0546 | 50   | 0.3250          | 0.87     |
| No log        | 0.1092 | 100  | 0.2651          | 0.91     |
| No log        | 0.1638 | 150  | 0.4169          | 0.84     |
| No log        | 0.2183 | 200  | 0.3473          | 0.89     |
| No log        | 0.2729 | 250  | 0.3455          | 0.88     |
| No log        | 0.3275 | 300  | 0.2863          | 0.9      |
| No log        | 0.3821 | 350  | 0.2220          | 0.93     |
| No log        | 0.4367 | 400  | 0.2382          | 0.92     |
| No log        | 0.4913 | 450  | 0.3704          | 0.89     |
| 0.2918        | 0.5459 | 500  | 0.2641          | 0.92     |
| 0.2918        | 0.6004 | 550  | 0.2706          | 0.9      |
| 0.2918        | 0.6550 | 600  | 0.1759          | 0.93     |
| 0.2918        | 0.7096 | 650  | 0.3032          | 0.92     |
| 0.2918        | 0.7642 | 700  | 0.1880          | 0.91     |
| 0.2918        | 0.8188 | 750  | 0.2076          | 0.92     |
| 0.2918        | 0.8734 | 800  | 0.3046          | 0.91     |
| 0.2918        | 0.9279 | 850  | 0.1953          | 0.91     |


### Framework versions

- Transformers 4.42.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1