File size: 2,421 Bytes
d762857 6860872 f9e0d40 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 d762857 6860872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: Ammar-alhaj-ali/arabic-MARBERT-sentiment
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: unfortified_marbert2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# unfortified_marbert2
This model is a fine-tuned version of [Ammar-alhaj-ali/arabic-MARBERT-sentiment](https://huggingface.co/Ammar-alhaj-ali/arabic-MARBERT-sentiment) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1953
- Accuracy: 0.91
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.0546 | 50 | 0.3250 | 0.87 |
| No log | 0.1092 | 100 | 0.2651 | 0.91 |
| No log | 0.1638 | 150 | 0.4169 | 0.84 |
| No log | 0.2183 | 200 | 0.3473 | 0.89 |
| No log | 0.2729 | 250 | 0.3455 | 0.88 |
| No log | 0.3275 | 300 | 0.2863 | 0.9 |
| No log | 0.3821 | 350 | 0.2220 | 0.93 |
| No log | 0.4367 | 400 | 0.2382 | 0.92 |
| No log | 0.4913 | 450 | 0.3704 | 0.89 |
| 0.2918 | 0.5459 | 500 | 0.2641 | 0.92 |
| 0.2918 | 0.6004 | 550 | 0.2706 | 0.9 |
| 0.2918 | 0.6550 | 600 | 0.1759 | 0.93 |
| 0.2918 | 0.7096 | 650 | 0.3032 | 0.92 |
| 0.2918 | 0.7642 | 700 | 0.1880 | 0.91 |
| 0.2918 | 0.8188 | 750 | 0.2076 | 0.92 |
| 0.2918 | 0.8734 | 800 | 0.3046 | 0.91 |
| 0.2918 | 0.9279 | 850 | 0.1953 | 0.91 |
### Framework versions
- Transformers 4.42.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|