--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_6_1 metrics: - wer model-index: - name: wav2vec2-large-mms-1b-thai-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_6_1 type: common_voice_6_1 config: th split: test args: th metrics: - name: Wer type: wer value: 0.7234125438254773 --- # wav2vec2-large-mms-1b-thai-colab This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2452 - Wer: 0.7234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.0794 | 0.17 | 100 | 0.3832 | 0.8329 | | 0.561 | 0.33 | 200 | 0.3162 | 0.8099 | | 0.5132 | 0.5 | 300 | 0.2907 | 0.7842 | | 0.5015 | 0.66 | 400 | 0.2954 | 0.7998 | | 0.5126 | 0.83 | 500 | 0.2812 | 0.7924 | | 0.5182 | 0.99 | 600 | 0.2782 | 0.7631 | | 0.4459 | 1.16 | 700 | 0.2735 | 0.7526 | | 0.4694 | 1.32 | 800 | 0.2716 | 0.7628 | | 0.4576 | 1.49 | 900 | 0.2649 | 0.7538 | | 0.4749 | 1.65 | 1000 | 0.2614 | 0.7503 | | 0.4282 | 1.82 | 1100 | 0.2687 | 0.7464 | | 0.4009 | 1.98 | 1200 | 0.2622 | 0.7480 | | 0.3976 | 2.15 | 1300 | 0.2619 | 0.7421 | | 0.4306 | 2.31 | 1400 | 0.2620 | 0.7538 | | 0.4413 | 2.48 | 1500 | 0.2551 | 0.7515 | | 0.3888 | 2.64 | 1600 | 0.2545 | 0.7339 | | 0.4213 | 2.81 | 1700 | 0.2541 | 0.7316 | | 0.3945 | 2.98 | 1800 | 0.2507 | 0.7246 | | 0.3765 | 3.14 | 1900 | 0.2495 | 0.7234 | | 0.3859 | 3.31 | 2000 | 0.2498 | 0.7269 | | 0.3931 | 3.47 | 2100 | 0.2469 | 0.7250 | | 0.3737 | 3.64 | 2200 | 0.2470 | 0.7242 | | 0.3716 | 3.8 | 2300 | 0.2454 | 0.7219 | | 0.3582 | 3.97 | 2400 | 0.2452 | 0.7234 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1