---
library_name: transformers
license:
- llama3.1
- gemma
base_model: google/gemma-2-27b
tags:
- axolotl
- generated_from_trainer
---
# Llama-Gemma-2-27b-SFT-trial1
## 概要
[google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b)を教師あり学習によりInstruction Tuningしたモデルです。
[松尾研大規模言語モデル講座2024](https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/)のコンペ用の提出モデル作成の一環として作成・公開しています。
This model is built with Llama and Qwen.
## 使用データセット
- [Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered](https://huggingface.co/datasets/Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered)
- [Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted](https://huggingface.co/datasets/Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted)
- [Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered](https://huggingface.co/datasets/Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered)
- [Aratako/Open-Platypus-Japanese-masked-formatted](https://huggingface.co/datasets/Aratako/Open-Platypus-Japanese-masked-formatted)
- [kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja)
- [kanhatakeyama/ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)
- [Aratako/magpie-ultra-v0.1-formatted](https://huggingface.co/datasets/Aratako/magpie-ultra-v0.1-formatted)
- [Aratako/orca-agentinstruct-1M-v1-selected](https://huggingface.co/datasets/Aratako/orca-agentinstruct-1M-v1-selected)
- [Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k](https://huggingface.co/datasets/Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k)
## ライセンス
本モデルは学習に利用したデータの関係で以下のライセンスの影響を受けます。
- [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/)を継承します。
- [Gemma Terms of Use](https://ai.google.dev/gemma/terms)を継承します。
- [Qwen LICENSE AGREEMENT](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE)の影響を受けます。ライセンスは継承しませんが、「Built with Qwen」のような文言を記載する必要があります。
## 学習に関する詳細
本モデルの学習には[axolotl](https://github.com/axolotl-ai-cloud/axolotl)を使いました。パラメータ等の学習の設定は下記の自動生成された記述をご確認ください。
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.5.2`
```yaml
base_model: google/gemma-2-27b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: Aratako/fft-1
hub_strategy: "end"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_cross_entropy: false
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: gemma
datasets:
- path: Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/Open-Platypus-Japanese-masked-formatted
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3
split: 20240806filtered
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/magpie-ultra-v0.1-formatted
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/orca-agentinstruct-1M-v1-selected
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
shuffle_merged_datasets: true
dataset_prepared_path: /workspace/data/fft-data
val_set_size: 0.003
output_dir: /workspace/data/27b-fft-out-1
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: 27b-fft
wandb_entity: aratako-lm
wandb_watch:
wandb_name: attempt-01
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler:
cosine_min_lr_ratio: 0.1
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
save_strategy: steps
save_steps: 100
save_total_limit: 2
warmup_steps: 10
eval_steps: 100
eval_batch_size: 1
eval_table_size:
eval_max_new_tokens:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token:
```
# fft-1
This model is a fine-tuned version of [google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 224
- total_eval_batch_size: 7
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9427 | 0.0020 | 1 | 0.9940 |
| 0.6566 | 0.2043 | 100 | 0.6648 |
| 0.6609 | 0.4086 | 200 | 0.6430 |
| 0.6457 | 0.6129 | 300 | 0.6306 |
| 0.6322 | 0.8172 | 400 | 0.6203 |
| 0.5082 | 1.0204 | 500 | 0.6238 |
| 0.5348 | 1.2247 | 600 | 0.6212 |
| 0.5253 | 1.4290 | 700 | 0.6181 |
| 0.5136 | 1.6333 | 800 | 0.6147 |
| 0.5125 | 1.8376 | 900 | 0.6122 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3