--- library_name: transformers license: - llama3.1 - gemma base_model: google/gemma-2-27b tags: - axolotl - generated_from_trainer --- # Llama-Gemma-2-27b-SFT-trial1 ## 概要 [google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b)を教師あり学習によりInstruction Tuningしたモデルです。 [松尾研大規模言語モデル講座2024](https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/)のコンペ用の提出モデル作成の一環として作成・公開しています。 This model is built with Llama and Qwen. ## 使用データセット - [Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered](https://huggingface.co/datasets/Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered) - [Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted](https://huggingface.co/datasets/Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted) - [Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered](https://huggingface.co/datasets/Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered) - [Aratako/Open-Platypus-Japanese-masked-formatted](https://huggingface.co/datasets/Aratako/Open-Platypus-Japanese-masked-formatted) - [kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja) - [kanhatakeyama/ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3) - [Aratako/magpie-ultra-v0.1-formatted](https://huggingface.co/datasets/Aratako/magpie-ultra-v0.1-formatted) - [Aratako/orca-agentinstruct-1M-v1-selected](https://huggingface.co/datasets/Aratako/orca-agentinstruct-1M-v1-selected) - [Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k](https://huggingface.co/datasets/Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k) ## ライセンス 本モデルは学習に利用したデータの関係で以下のライセンスの影響を受けます。 - [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/)を継承します。 - [Gemma Terms of Use](https://ai.google.dev/gemma/terms)を継承します。 - [Qwen LICENSE AGREEMENT](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE)の影響を受けます。ライセンスは継承しませんが、「Built with Qwen」のような文言を記載する必要があります。 ## 学習に関する詳細 本モデルの学習には[axolotl](https://github.com/axolotl-ai-cloud/axolotl)を使いました。パラメータ等の学習の設定は下記の自動生成された記述をご確認ください。 [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: google/gemma-2-27b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer hub_model_id: Aratako/fft-1 hub_strategy: "end" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin liger_cross_entropy: false liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false chat_template: gemma datasets: - path: Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered type: chat_template field_messages: messages message_field_role: role message_field_content: content - path: Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted type: chat_template field_messages: conversations message_field_role: role message_field_content: content - path: Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered type: chat_template field_messages: conversations message_field_role: role message_field_content: content - path: Aratako/Open-Platypus-Japanese-masked-formatted type: chat_template field_messages: conversations message_field_role: role message_field_content: content - path: kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja type: chat_template field_messages: messages message_field_role: role message_field_content: content - path: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3 split: 20240806filtered type: chat_template field_messages: messages message_field_role: role message_field_content: content - path: Aratako/magpie-ultra-v0.1-formatted type: chat_template field_messages: conversations message_field_role: role message_field_content: content - path: Aratako/orca-agentinstruct-1M-v1-selected type: chat_template field_messages: messages message_field_role: role message_field_content: content - path: Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k type: chat_template field_messages: messages message_field_role: role message_field_content: content shuffle_merged_datasets: true dataset_prepared_path: /workspace/data/fft-data val_set_size: 0.003 output_dir: /workspace/data/27b-fft-out-1 sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: 27b-fft wandb_entity: aratako-lm wandb_watch: wandb_name: attempt-01 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 8 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine_min_lr_ratio: 0.1 learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: auto_resume_from_checkpoints: true local_rank: logging_steps: 1 xformers_attention: flash_attention: true save_strategy: steps save_steps: 100 save_total_limit: 2 warmup_steps: 10 eval_steps: 100 eval_batch_size: 1 eval_table_size: eval_max_new_tokens: debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: ```

# fft-1 This model is a fine-tuned version of [google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - gradient_accumulation_steps: 4 - total_train_batch_size: 224 - total_eval_batch_size: 7 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9427 | 0.0020 | 1 | 0.9940 | | 0.6566 | 0.2043 | 100 | 0.6648 | | 0.6609 | 0.4086 | 200 | 0.6430 | | 0.6457 | 0.6129 | 300 | 0.6306 | | 0.6322 | 0.8172 | 400 | 0.6203 | | 0.5082 | 1.0204 | 500 | 0.6238 | | 0.5348 | 1.2247 | 600 | 0.6212 | | 0.5253 | 1.4290 | 700 | 0.6181 | | 0.5136 | 1.6333 | 800 | 0.6147 | | 0.5125 | 1.8376 | 900 | 0.6122 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3