Aratako commited on
Commit
92582b8
1 Parent(s): 1ff23e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -180
README.md CHANGED
@@ -1,199 +1,86 @@
1
  ---
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model:
3
+ - tokyotech-llm/Swallow-7b-hf
4
+ - tokyotech-llm/Swallow-7b-instruct-hf
5
+ - nitky/Superswallow-7b-v0.1
6
+ - nitky/Superswallow-7b-v0.2
7
+ - nitky/Superswallow-7b-v0.3
8
  library_name: transformers
9
+ tags:
10
+ - merge
11
+ - moe
12
+ - lisa
13
+ license: cc-by-nc-sa-4.0
14
+ datasets:
15
+ - kunishou/amenokaku-code-instruct
16
+ - llm-jp/oasst1-21k-en
17
+ - hieunguyenminh/roleplay
18
+ - meta-math/MetaMathQA
19
+ - kunishou/jp-effective-instructions
20
+ language:
21
+ - ja
22
  ---
23
 
24
+ # Swallow-MoE-4x7B-lisa
25
 
26
+ ## 概要
27
+ [tokyotech-llm/Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf)をベースに、以下の4モデルをgate_mode=randomでMoEし、その後[LISA](https://arxiv.org/abs/2403.17919)という手法でインストラクションチューニングを施したモデルです。
28
 
29
+ - [tokyotech-llm/Swallow-7b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)
30
+ - [nitky/Superswallow-7b-v0.1](https://huggingface.co/nitky/Superswallow-7b-v0.1)
31
+ - [nitky/Superswallow-7b-v0.2](https://huggingface.co/nitky/Superswallow-7b-v0.2)
32
+ - [nitky/Superswallow-7b-v0.3](https://huggingface.co/nitky/Superswallow-7b-v0.3)
33
 
34
+ お試しで作ってみたものなので、性能にはあまり期待しないでください。以下にベンチマーク結果も記載しております。
35
 
36
+ **なお、この学習で使ったLISAの実装には[不具合がある可能性](https://github.com/OptimalScale/LMFlow/issues/726)が指摘されており、正常に学習できていない可能性があります。**
37
 
38
+ ## データセット
39
+ 以下の合計14327件のデータを学習に利用しました。プロンプトフォーマットはAlpacaを利用しています。
40
 
41
+ - [kunishou/amenokaku-code-instruct](https://huggingface.co/datasets/kunishou/amenokaku-code-instruct)の各sourceから最大100件、計1475件
42
+ - [kunishou/jp-effective-instructions](https://huggingface.co/datasets/kunishou/jp-effective-instructions)のinstructionとoutputがともに11文字以上のデータ、計5050件
43
+ - [llm-jp/oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)よりランダムな1000件(英語)
44
+ - [hieunguyenminh/roleplay](https://huggingface.co/datasets/hieunguyenminh/roleplay)よりランダムな1000件(英語)
45
+ - [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)よりランダムな1000件(英語)
46
+ - [ichikara-instruction](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)より、4802件
47
 
48
+ なお、ichikara-instructionの利用によりCC-BY-NC-SAを継承します。
49
 
50
+ ## 学習の設定
51
+ 主な学習パラメータは以下の通りです。なお、学習途中でのエラーのため2epochs程度しか学習できておりません。
 
 
 
 
 
52
 
53
+ - lisa_activated_layers: 8
54
+ - lisa_interval_steps: 13
55
+ - learning_rate: 5e-5
56
+ - num_train_epochs: 約2epochs
57
+ - batch_size: 64
58
+ - max_seq_length: 2048
59
 
60
+ ## 評価
61
+ マージに利用したモデル群と本モデルの[japanese-mt-bench](https://github.com/Stability-AI/FastChat/tree/jp-stable/fastchat/llm_judge)の結果は以下の通りです。(シングルターン)
62
 
63
+ Swallow-instructよりはスコアが高く、Superswallowよりは低いという何とも言えない結果になっております。
64
+ とはいえ、少量のデータセット・たった2epochsの学習でSwallow-instructを超えられているのは一定の成果とも言えるかもしれません。
 
65
 
66
+ |Model|Size|Coding|Extraction|Humanities|Math|Reasoning|Roleplay|STEM|Writing|avg_score|
67
+ |---|---|---|---|---|---|---|---|---|---|---|
68
+ | Swallow-7b-instruct-hf | 7B | 2.0 | 4.6 | 5.4 | 1.7 | 2.8 | 5.0 | 5.9 | 6.9 | 4.2875 |
69
+ | Superswallow-7b-v0.1 | 7B | 2.0 | 5.1 | 7.8 | 2.1 | 3.6 | 6.2 | 7.3 | 7.5 | 5.2000 |
70
+ | Superswallow-7b-v0.2 | 7B | 2.2 | 5.8 | 6.7 | 2.5 | 4.3 | 5.5 | 6.6 | 5.8 | 4.9250 |
71
+ | Superswallow-7b-v0.3 | 7B | 2.1 | 4.6 | 8.3 | 2.1 | 5.0 | 6.3 | 7.7 | 8.9 | 5.6250 |
72
+ | **This model** | **4x7B** | **2.0** | **3.4** | **7.5** | **1.9** | **2.6** | **5.5** | **6.3** | **7.5** | **4.5875** |
73
 
74
+ ![レーダーチャート](./japanese_mt_bench.png)
75
 
76
+ 同様に、jsquad(jsquad-1.1-0.3, 2-shots)、jcommonsenseqa(jcommonsenseqa-1.1-0.3, 3-shots)、jnli(jnli-1.3-0.3, 3-shots)、marc_ja(marc_ja-1.1-0.3, 3-shots)結果は以下の通りです。(jsquadは100で割り、それぞれ小数点以下第4位を四捨五入)
77
+ ここでもSwallow-instructよりはスコアが高く、Superswallowよりは低い結果になっています。なお、こちらは参考として本モデルのインストラクションチューニング前(MoEのみ)のモデルのスコアも載せてあります。
78
 
79
+ |Model|Size|jsquad(exact_match)|jcommonsenseqa(acc)|jnli(acc)|marc_ja(acc)|average|
80
+ |---|---|---|---|---|---|---|
81
+ | Swallow-7b-instruct-hf | 7B | 0.757 | 0.831 | 0.212 | 0.945 | 0.686 |
82
+ | Superswallow-7b-v0.1 | 7B | 0.441 | 0.846 | 0.374 | 0.966 | 0.657 |
83
+ | Superswallow-7b-v0.2 | 7B | 0.722 | 0.846 | 0.381 | 0.964 | 0.728 |
84
+ | Superswallow-7b-v0.3 | 7B | 0.721 | 0.850 | 0.362 | 0.964 | 0.724 |
85
+ | **This model without fine-tuning** | **4x7B** | **0.674** | **0.809** | **0.333** | **0.952** | **0.692** |
86
+ | **This model** | **4x7B** | **0.741** | **0.806** | **0.385** | **0.948** | **0.719** |