--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: tes1-UASNLP2 results: [] --- # tes1-UASNLP2 This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3413 - Accuracy: 0.8705 - Precision: 0.8858 - Recall: 0.8803 - F1: 0.8830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4596 | 1.2121 | 100 | 0.3631 | 0.8554 | 0.8767 | 0.8605 | 0.8685 | | 0.254 | 2.4242 | 200 | 0.3413 | 0.8705 | 0.8858 | 0.8803 | 0.8830 | | 0.1674 | 3.6364 | 300 | 0.3847 | 0.8793 | 0.8758 | 0.9118 | 0.8934 | | 0.0968 | 4.8485 | 400 | 0.4927 | 0.8759 | 0.9145 | 0.8564 | 0.8845 | | 0.0614 | 6.0606 | 500 | 0.5308 | 0.8721 | 0.8748 | 0.8981 | 0.8863 | | 0.0418 | 7.2727 | 600 | 0.6098 | 0.8759 | 0.8988 | 0.8748 | 0.8867 | | 0.0296 | 8.4848 | 700 | 0.6507 | 0.8751 | 0.8910 | 0.8830 | 0.8870 | | 0.0183 | 9.6970 | 800 | 0.6822 | 0.8789 | 0.8944 | 0.8865 | 0.8904 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Tokenizers 0.19.1