--- language: - ara license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - AsemBadr/GP metrics: - wer model-index: - name: Whisper Small for Quran Recognition results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Quran_Reciters type: AsemBadr/GP config: default split: test args: 'config: default, split: train' metrics: - name: Wer type: wer value: 3.2834794567646557 --- # Whisper Small for Quran Recognition This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Quran_Reciters dataset. It achieves the following results on the evaluation set: - Loss: 0.0210 - Wer: 3.2835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0073 | 1.62 | 500 | 0.0249 | 5.0026 | | 0.0014 | 3.24 | 1000 | 0.0214 | 4.1086 | | 0.0008 | 4.85 | 1500 | 0.0221 | 3.9883 | | 0.0 | 6.47 | 2000 | 0.0180 | 2.9740 | | 0.0 | 8.09 | 2500 | 0.0177 | 3.0944 | | 0.0 | 9.71 | 3000 | 0.0178 | 3.0944 | | 0.0 | 11.33 | 3500 | 0.0179 | 3.1288 | | 0.0 | 12.94 | 4000 | 0.0179 | 3.1288 | | 0.0 | 14.56 | 4500 | 0.0181 | 2.8881 | | 0.0 | 16.18 | 5000 | 0.0184 | 2.9225 | | 0.0 | 17.8 | 5500 | 0.0186 | 3.0256 | | 0.0 | 19.42 | 6000 | 0.0188 | 3.1803 | | 0.0 | 21.04 | 6500 | 0.0190 | 3.1631 | | 0.0 | 22.65 | 7000 | 0.0191 | 3.1631 | | 0.0 | 24.27 | 7500 | 0.0192 | 3.1803 | | 0.0 | 25.89 | 8000 | 0.0192 | 3.1631 | | 0.0 | 27.51 | 8500 | 0.0196 | 3.2491 | | 0.0 | 29.13 | 9000 | 0.0199 | 3.2491 | | 0.0 | 30.74 | 9500 | 0.0202 | 3.2835 | | 0.0 | 32.36 | 10000 | 0.0204 | 3.2319 | | 0.0 | 33.98 | 10500 | 0.0207 | 3.2835 | | 0.0 | 35.6 | 11000 | 0.0209 | 3.2663 | | 0.0 | 37.22 | 11500 | 0.0210 | 3.2835 | | 0.0 | 38.83 | 12000 | 0.0210 | 3.2835 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.2 - Datasets 2.17.1 - Tokenizers 0.15.1