End of training
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
base_model: openai/whisper-small
|
6 |
+
tags:
|
7 |
+
- speaker-diarization
|
8 |
+
- speaker-segmentation
|
9 |
+
- generated_from_trainer
|
10 |
+
datasets:
|
11 |
+
- diarizers-community/ami_speaker_diarization_dataset
|
12 |
+
model-index:
|
13 |
+
- name: speaker-segmentation-fine-tuned-ami-speaker-diarization
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# speaker-segmentation-fine-tuned-ami-speaker-diarization
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the diarizers-community/ami_speaker_diarization_dataset dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.4425
|
25 |
+
- Der: 0.1760
|
26 |
+
- False Alarm: 0.0627
|
27 |
+
- Missed Detection: 0.0634
|
28 |
+
- Confusion: 0.0499
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.001
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: cosine
|
53 |
+
- num_epochs: 5
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
|
59 |
+
| 0.3957 | 1.0 | 1809 | 0.4538 | 0.1799 | 0.0605 | 0.0656 | 0.0537 |
|
60 |
+
| 0.4027 | 2.0 | 3618 | 0.4446 | 0.1780 | 0.0645 | 0.0627 | 0.0508 |
|
61 |
+
| 0.3639 | 3.0 | 5427 | 0.4504 | 0.1798 | 0.0669 | 0.0604 | 0.0524 |
|
62 |
+
| 0.3764 | 4.0 | 7236 | 0.4431 | 0.1762 | 0.0632 | 0.0623 | 0.0508 |
|
63 |
+
| 0.3916 | 5.0 | 9045 | 0.4425 | 0.1760 | 0.0627 | 0.0634 | 0.0499 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.40.1
|
69 |
+
- Pytorch 2.1.2
|
70 |
+
- Datasets 2.18.0
|
71 |
+
- Tokenizers 0.19.1
|