--- language: - jpn license: apache-2.0 base_model: openai/whisper-small tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.7482 - Der: 0.2201 - False Alarm: 0.0465 - Missed Detection: 0.1319 - Confusion: 0.0417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5488 | 1.0 | 328 | 0.7565 | 0.2280 | 0.0461 | 0.1355 | 0.0465 | | 0.475 | 2.0 | 656 | 0.7596 | 0.2220 | 0.0467 | 0.1334 | 0.0419 | | 0.4734 | 3.0 | 984 | 0.7531 | 0.2215 | 0.0437 | 0.1364 | 0.0414 | | 0.4535 | 4.0 | 1312 | 0.7468 | 0.2194 | 0.0462 | 0.1323 | 0.0409 | | 0.4764 | 5.0 | 1640 | 0.7482 | 0.2201 | 0.0465 | 0.1319 | 0.0417 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1