Aurélien-Morgan CLAUDON

Aurelien-Morgan

AI & ML interests

None yet

Recent Activity

Organizations

Giskard's profile picture Gradio-Blocks-Party's profile picture Keras Dreambooth Event's profile picture Blog-explorers's profile picture huggingPartyParis's profile picture ZeroGPU Explorers's profile picture C4AI Community's profile picture Chinese LLMs on Hugging Face's profile picture Paris AI Running Club's profile picture cvmistralparis's profile picture Hugging Face Discord Community's profile picture Hugging Face Party @ PyTorch Conference's profile picture Nerdy Face's profile picture retrain-pipelines's profile picture

Aurelien-Morgan's activity

reacted to lysandre's post with ❤️ 2 days ago
view post
Post
5097
SmolVLM-2 and SigLIP-2 are now part of transformers in dedicated releases!

They're added on top of the v4.49.0 release, and can be installed from the following tags: v4.49.0-SmolVLM-2 and v4.49.0-SigLIP-2.

This marks a new beginning for the release process of transformers. For the past five years, we've been doing monthly releases featuring many models (v4.49.0, the latest release, features 9 new architectures).

Starting with SmolVLM-2 & SigLIP2, we'll now additionally release tags supporting new models on a stable branch. These models are therefore directly available for use by installing from the tag itself. These tags will continue to be updated with fixes applied to these models.

Going forward, continue expecting software releases following semantic versioning: v4.50.0 will have ~10 new architectures compared to v4.49.0, as well as a myriad of new features, improvements and bug fixes. Accompanying these software releases, we'll release tags offering brand new models as fast as possible, to make them accessible to all immediately.
  • 1 reply
·
reacted to jsulz's post with 🚀❤️ 4 days ago
view post
Post
3178
Time flies!

Six months after joining Hugging Face the Xet team is kicking off the first migrations from LFS to our storage for a number of repositories on the Hub.

More on the nitty gritty details behind the migration soon, but here are the big takeaways:

🤖 We've successfully completed the first migrations from LFS -> Xet to test the infrastructure and prepare for a wider release

✅ No action on your part needed - you can work with a Xet-backed repo like any other repo on the Hub (for now - major improvements on their way!)

👀 Keep an eye out for the Xet logo to see if a repo you know is on our infra! See the screenshots below to spot the difference 👇

⏩ ⏩ ⏩ Blazing uploads and downloads coming soon. W’re gearing up for a full integration with the Hub's Python library that will make building on the Hub faster than ever - special thanks to @celinah and @Wauplin for their assistance.

🎉 Want Early Access? If you’re curious and want to test it out the bleeding edge that will power the development experience on the Hub, we’d love to partner with you. Let me know!

This is the culmination of a lot of effort from the entire team. Big round of applause to @sirahd @brianronan @jgodlewski @hoytak @seanses @assafvayner @znation @saba9 @rajatarya @port8080 @yuchenglow
  • 1 reply
·
reacted to fdaudens's post with ❤️ 4 days ago
replied to AdinaY's post 5 days ago
reacted to AdinaY's post with 🔥 5 days ago
reacted to merve's post with ❤️🚀 5 days ago
view post
Post
4977
Google just released PaliGemma 2 Mix: new versatile instruction vision language models 🔥

> Three new models: 3B, 10B, 28B with res 224, 448 💙
> Can do vision language tasks with open-ended prompts, understand documents, and segment or detect anything 🤯

Read more https://huggingface.co/blog/paligemma2mix
Try the demo google/paligemma2-10b-mix
All models are here google/paligemma-2-mix-67ac6a251aaf3ee73679dcc4
reacted to fdaudens's post with ❤️ 12 days ago
view post
Post
2675
⭐️ The AI Energy Score project just launched - this is a game-changer for making informed decisions about AI deployment.

You can now see exactly how much energy your chosen model will consume, with a simple 5-star rating system. Think appliance energy labels, but for AI.

Looking at transcription models on the leaderboard is fascinating: choosing between whisper-tiny or whisper-large-v3 can make a 7x difference. Real-time data on these tradeoffs changes everything.

166 models already evaluated across 10 different tasks, from text generation to image classification. The whole thing is public and you can submit your own models to test.

Why this matters:
- Teams can pick efficient models that still get the job done
- Developers can optimize for energy use from day one
- Organizations can finally predict their AI environmental impact

If you're building with AI at any scale, definitely worth checking out.

👉 leaderboard: https://lnkd.in/esrSxetj
👉 blog post: https://lnkd.in/eFJvzHi8

Huge work led by @sasha with @bgamazay @yjernite @sarahooker @regisss @meg
  • 1 reply
·
replied to AdinaY's post 12 days ago
reacted to AdinaY's post with 🔥😎 12 days ago
view post
Post
3537
InspireMusic 🎵🔥 an open music generation framework by Alibaba FunAudio Lab
Model: FunAudioLLM/InspireMusic-1.5B-Long
Demo: FunAudioLLM/InspireMusic
✨ Music, songs, audio - ALL IN ONE
✨ High quality audio: 24kHz & 48kHz sampling rates
✨ Long-Form Generation: enables extended audio creation
✨ Efficient Fine-Tuning: precision (BF16, FP16, FP32) with user-friendly scripts
  • 1 reply
·
reacted to Kseniase's post with ❤️ 23 days ago
view post
Post
4875
8 Free Sources on Reinforcement Learning

With the phenomenon of DeepSeek-R1's top reasoning capabilities, we all saw the true power of RL. At its core, RL is a type of machine learning where a model/agent learns to make decisions by interacting with an environment to maximize a reward. RL learns through trial and error, receiving feedback in the form of rewards or penalties.

Here's a list of free sources that will help you dive into RL and how to use it:

1. "Reinforcement Learning: An Introduction" book by Richard S. Sutton and Andrew G. Barto -> https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

2. Hugging Face Deep Reinforcement Learning Course -> https://huggingface.co/learn/deep-rl-course/unit0/introduction
You'll learn how to train agents in unique environments, using best libraries, share your results, compete in challenges, and earn a certificate.

3. OpenAI Spinning Up in Deep RL -> https://spinningup.openai.com/en/latest/index.html
A comprehensive overview of RL with many useful resources

4. "Reinforcement Learning and Optimal Control" books, video lectures and course material by Dimitri P. Bertsekas from ASU -> https://web.mit.edu/dimitrib/www/RLbook.html
Explores approximate Dynamic Programming (DP) and RL with key concepts and methods like rollout, tree search, and neural network training for RL and more.

5. RL Course by David Silver (Google DeepMind) -> https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPeb
Many recommend these video lectures as a good foundation

6. RL theory seminars -> https://sites.google.com/view/rltheoryseminars/home?authuser=0
Provides virtual seminars from different experts about RL advancements

7. "Reinforcement Learning Specialization" (a 4-course series on Coursera) -> https://www.coursera.org/learn/fundament

8. Concepts: RLHF, RLAIF, RLEF, RLCF -> https://www.turingpost.com/p/rl-f
Our flashcards easily explain what are these four RL approaches with different feedback
reacted to hexgrad's post with 👍 26 days ago
reacted to danielhanchen's post with ❤️🔥 about 2 months ago
view post
Post
4654
We fixed many bugs in Phi-4 & uploaded fixed GGUF + 4-bit versions! ✨

Our fixed versions are even higher on the Open LLM Leaderboard than Microsoft's!

GGUFs: unsloth/phi-4-GGUF
Dynamic 4-bit: unsloth/phi-4-unsloth-bnb-4bit

You can also now finetune Phi-4 for free on Colab: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb

Read our blogpost for more details on bug fixes etc: https://unsloth.ai/blog/phi4
reacted to BrigitteTousi's post with 👀 about 2 months ago
view post
Post
1263
Community fine-tuned models are more carbon efficient than the models they are derived from! 🥳🌿

@alozowski @clefourrier @SaylorTwift @albertvillanova evaluated CO₂ emissions associated with model inference for over 3000 models on the Open LLM Leaderboard. Interesting trends and new insights emerged...👀

Blog Post: https://huggingface.co/blog/leaderboard-emissions-analysis

Leaderboard: open-llm-leaderboard/open_llm_leaderboard
reacted to andrewrreed's post with 👍 about 2 months ago
view post
Post
2746
🚀 Supercharge your LLM apps with Langfuse on Hugging Face Spaces!

Langfuse brings end-to-end observability and tooling to accelerate your dev workflow from experiments through production

Now available as a Docker Space directly on the HF Hub! 🤗

🔍 Trace everything: monitor LLM calls, retrieval, and agent actions with popular frameworks
1⃣ One-click deployment: on Spaces with persistent storage and integrated OAuth
🛠 Simple Prompt Management: Version, edit, and update without redeployment
✅ Intuitive Evals: Collect user feedback, run model/prompt evaluations, and improve quality
📊 Dataset Creation: Build datasets directly from production data to enhance future performance

Kudos to the Langfuse team for this collab and the awesome, open-first product they’re building! 👏 @marcklingen @Clemo @MJannik

🔗 Space: langfuse/langfuse-template-space
🔗 Docs: https://huggingface.co/docs/hub/spaces-sdks-docker-langfuse
  • 1 reply
·
reacted to tomaarsen's post with ❤️ about 2 months ago
view post
Post
3016
That didn't take long! Nomic AI has finetuned the new ModernBERT-base encoder model into a strong embedding model for search, classification, clustering and more!

Details:
🤖 Based on ModernBERT-base with 149M parameters.
📊 Outperforms both nomic-embed-text-v1 and nomic-embed-text-v1.5 on MTEB!
🏎️ Immediate FA2 and unpacking support for super efficient inference.
🪆 Trained with Matryoshka support, i.e. 2 valid output dimensionalities: 768 and 256.
➡️ Maximum sequence length of 8192 tokens!
2️⃣ Trained in 2 stages: unsupervised contrastive data -> high quality labeled datasets.
➕ Integrated in Sentence Transformers, Transformers, LangChain, LlamaIndex, Haystack, etc.
🏛️ Apache 2.0 licensed: fully commercially permissible

Try it out here: nomic-ai/modernbert-embed-base

Very nice work by Zach Nussbaum and colleagues at Nomic AI.
reacted to AdinaY's post with 🔥 2 months ago