File size: 3,922 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from typing import Any, Callable, Dict, List, Optional, Union

import torch
from diffusers import StableDiffusionImg2ImgPipeline

from internals.data.result import Result
from internals.pipelines.twoStepPipeline import two_step_pipeline
from internals.util.commons import disable_safety_checker, download_image


class AbstractPipeline:
    def load(self, model_dir: str):
        pass

    def create(self, pipe):
        pass


class Text2Img(AbstractPipeline):
    def load(self, model_dir: str):
        self.pipe = two_step_pipeline.from_pretrained(
            model_dir, torch_dtype=torch.float16
        ).to("cuda")
        self.__patch()

    def create(self, pipeline: AbstractPipeline):
        self.pipe = two_step_pipeline(**pipeline.pipe.components).to("cuda")
        self.__patch()

    def __patch(self):
        self.pipe.enable_xformers_memory_efficient_attention()

    @torch.inference_mode()
    def process(
        self,
        prompt: Union[str, List[str]] = None,
        modified_prompts: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        iteration: float = 3.0,
    ):
        result = self.pipe.two_step_pipeline(
            prompt=prompt,
            modified_prompts=modified_prompts,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
            cross_attention_kwargs=cross_attention_kwargs,
            iteration=iteration,
        )
        return Result.from_result(result)


class Img2Img(AbstractPipeline):
    def load(self, model_dir: str):
        self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_dir, torch_dtype=torch.float16
        ).to("cuda")
        self.__patch()

    def create(self, pipeline: AbstractPipeline):
        self.pipe = StableDiffusionImg2ImgPipeline(**pipeline.pipe.components).to(
            "cuda"
        )
        self.__patch()

    def __patch(self):
        self.pipe.enable_xformers_memory_efficient_attention()

    @torch.inference_mode()
    def process(
        self,
        prompt: List[str],
        imageUrl: str,
        negative_prompt: List[str],
        strength: float,
        guidance_scale: float,
        steps: int,
        width: int,
        height: int,
    ):
        image = download_image(imageUrl).resize((width, height))

        result = self.pipe.__call__(
            prompt=prompt,
            image=image,
            strength=strength,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_images_per_prompt=1,
            num_inference_steps=steps,
        )
        return Result.from_result(result)