File size: 5,551 Bytes
86248f3
19b3da3
 
 
 
 
 
 
 
b71808f
19b3da3
 
 
 
 
 
 
 
 
 
 
86248f3
 
 
 
 
 
 
19b3da3
 
b71808f
19b3da3
 
 
b71808f
 
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
86248f3
19b3da3
 
 
 
86248f3
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
86248f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
1bc457e
 
19b3da3
1bc457e
 
 
19b3da3
b71808f
19b3da3
 
 
1bc457e
 
19b3da3
 
 
 
 
 
1bc457e
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union

import torch
from diffusers import StableDiffusionImg2ImgPipeline

from internals.data.result import Result
from internals.pipelines.twoStepPipeline import two_step_pipeline
from internals.util.commons import disable_safety_checker, download_image
from internals.util.config import get_hf_token, num_return_sequences


class AbstractPipeline:
    def load(self, model_dir: str):
        pass

    def create(self, pipe):
        pass


class Text2Img(AbstractPipeline):
    @dataclass
    class Params:
        prompt: List[str] = None
        modified_prompt: List[str] = None
        prompt_left: List[str] = None
        prompt_right: List[str] = None

    def load(self, model_dir: str):
        self.pipe = two_step_pipeline.from_pretrained(
            model_dir, torch_dtype=torch.float16, use_auth_token=get_hf_token()
        ).to("cuda")
        self.__patch()

    def is_loaded(self):
        if hasattr(self, "pipe"):
            return True
        return False

    def create(self, pipeline: AbstractPipeline):
        self.pipe = two_step_pipeline(**pipeline.pipe.components).to("cuda")
        self.__patch()

    def __patch(self):
        self.pipe.enable_xformers_memory_efficient_attention()

    @torch.inference_mode()
    def process(
        self,
        params: Params,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[str] = None,
        num_images_per_prompt: int = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        iteration: float = 3.0,
    ):
        prompt = params.prompt

        if params.prompt_left and params.prompt_right:
            # multi-character pipelines
            prompt = [params.prompt[0], params.prompt_left[0], params.prompt_right[0]]
            result = self.pipe.multi_character_diffusion(
                prompt=prompt,
                pos=["1:1-0:0", "1:2-0:0", "1:2-0:1"],
                mix_val=[0.2, 0.8, 0.8],
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                negative_prompt=[negative_prompt or ""] * len(prompt),
                num_images_per_prompt=num_return_sequences,
                eta=eta,
                # generator=generator,
                output_type=output_type,
                return_dict=return_dict,
                callback=callback,
                callback_steps=callback_steps,
            )
        else:
            # two step pipeline
            modified_prompt = params.modified_prompt

            result = self.pipe.two_step_pipeline(
                prompt=prompt,
                modified_prompts=modified_prompt,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                negative_prompt=[negative_prompt or ""] * num_return_sequences,
                num_images_per_prompt=num_images_per_prompt,
                eta=eta,
                generator=generator,
                latents=latents,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
                output_type=output_type,
                return_dict=return_dict,
                callback=callback,
                callback_steps=callback_steps,
                cross_attention_kwargs=cross_attention_kwargs,
                iteration=iteration,
            )

        return Result.from_result(result)


class Img2Img(AbstractPipeline):
    __loaded = False

    def load(self, model_dir: str):
        if self.__loaded:
            return

        self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_dir, torch_dtype=torch.float16, use_auth_token=get_hf_token()
        ).to("cuda")
        self.__patch()

        self.__loaded = True

    def create(self, pipeline: AbstractPipeline):
        self.pipe = StableDiffusionImg2ImgPipeline(**pipeline.pipe.components).to(
            "cuda"
        )
        self.__patch()

        self.__loaded = True

    def __patch(self):
        self.pipe.enable_xformers_memory_efficient_attention()

    @torch.inference_mode()
    def process(
        self,
        prompt: List[str],
        imageUrl: str,
        negative_prompt: List[str],
        strength: float,
        guidance_scale: float,
        steps: int,
        width: int,
        height: int,
    ):
        image = download_image(imageUrl).resize((width, height))

        result = self.pipe.__call__(
            prompt=prompt,
            image=image,
            strength=strength,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_images_per_prompt=1,
            num_inference_steps=steps,
        )
        return Result.from_result(result)