File size: 9,770 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
from typing import List, Optional

import torch

from internals.data.dataAccessor import update_db
from internals.data.task import Task, TaskType
from internals.pipelines.commons import Img2Img, Text2Img
from internals.pipelines.controlnets import ControlNet
from internals.pipelines.img_classifier import ImageClassifier
from internals.pipelines.img_to_text import Image2Text
from internals.pipelines.prompt_modifier import PromptModifier
from internals.pipelines.safety_checker import SafetyChecker
from internals.util.args import apply_style_args
from internals.util.avatar import Avatar
from internals.util.cache import auto_clear_cuda_and_gc
from internals.util.commons import pickPoses, upload_image, upload_images
from internals.util.config import set_configs_from_task, set_root_dir
from internals.util.failure_hander import FailureHandler
from internals.util.lora_style import LoraStyle
from internals.util.slack import Slack

torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True

num_return_sequences = 4  # the number of results to generate
auto_mode = False

prompt_modifier = PromptModifier(num_of_sequences=num_return_sequences)
img2text = Image2Text()
img_classifier = ImageClassifier()
controlnet = ControlNet()
lora_style = LoraStyle()
text2img_pipe = Text2Img()
img2img_pipe = Img2Img()
safety_checker = SafetyChecker()
slack = Slack()
avatar = Avatar()


def get_patched_prompt(task: Task):
    def add_style_and_character(prompt: List[str], additional: Optional[str] = None):
        for i in range(len(prompt)):
            prompt[i] = avatar.add_code_names(prompt[i])
            prompt[i] = lora_style.prepend_style_to_prompt(prompt[i], task.get_style())
            if additional:
                prompt[i] = additional + " " + prompt[i]

    prompt = task.get_prompt()

    if task.is_prompt_engineering():
        prompt = prompt_modifier.modify(prompt)
    else:
        prompt = [prompt] * num_return_sequences

    ori_prompt = [task.get_prompt()] * num_return_sequences

    class_name = None
    # if task.get_imageUrl():
    #     class_name = img_classifier.classify(
    #         task.get_imageUrl(), task.get_width(), task.get_height()
    #     )
    add_style_and_character(ori_prompt, class_name)
    add_style_and_character(prompt, class_name)

    print({"prompts": prompt})

    return (prompt, ori_prompt)


def get_patched_prompt_tile_upscale(task: Task):
    if task.get_prompt():
        prompt = task.get_prompt()
    else:
        prompt = img2text.process(task.get_imageUrl())

    prompt = avatar.add_code_names(prompt)
    prompt = lora_style.prepend_style_to_prompt(prompt, task.get_style())

    class_name = img_classifier.classify(
        task.get_imageUrl(), task.get_width(), task.get_height()
    )
    prompt = class_name + " " + prompt

    print({"prompt": prompt})

    return prompt


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def canny(task: Task):
    prompt, _ = get_patched_prompt(task)

    controlnet.load_canny()

    # pipe2 is used for canny and pose
    lora_patcher = lora_style.get_patcher(controlnet.pipe2, task.get_style())
    lora_patcher.patch()

    images, has_nsfw = controlnet.process_canny(
        prompt=prompt,
        imageUrl=task.get_imageUrl(),
        seed=task.get_seed(),
        steps=task.get_steps(),
        width=task.get_width(),
        height=task.get_height(),
        guidance_scale=task.get_cy_guidance_scale(),
        negative_prompt=[
            f"monochrome, neon, x-ray, negative image, oversaturated, {task.get_negative_prompt()}"
        ]
        * num_return_sequences,
        **lora_patcher.kwargs(),
    )

    generated_image_urls = upload_images(images, "_canny", task.get_taskId())

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def tile_upscale(task: Task):
    output_key = "crecoAI/{}_tile_upscaler.png".format(task.get_taskId())

    prompt = get_patched_prompt_tile_upscale(task)

    controlnet.load_tile_upscaler()

    lora_patcher = lora_style.get_patcher(controlnet.pipe, task.get_style())
    lora_patcher.patch()

    images, has_nsfw = controlnet.process_tile_upscaler(
        imageUrl=task.get_imageUrl(),
        seed=task.get_seed(),
        steps=task.get_steps(),
        width=task.get_width(),
        height=task.get_height(),
        prompt=prompt,
        resize_dimension=task.get_resize_dimension(),
        negative_prompt=task.get_negative_prompt(),
        guidance_scale=task.get_ti_guidance_scale(),
    )

    generated_image_url = upload_image(images[0], output_key)

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_url": generated_image_url,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def pose(task: Task, s3_outkey: str = "_pose", poses: Optional[list] = None):
    prompt, _ = get_patched_prompt(task)

    controlnet.load_pose()

    # pipe2 is used for canny and pose
    lora_patcher = lora_style.get_patcher(controlnet.pipe2, task.get_style())
    lora_patcher.patch()

    if poses is None:
        poses = [controlnet.detect_pose(task.get_imageUrl())] * num_return_sequences

    images, has_nsfw = controlnet.process_pose(
        prompt=prompt,
        image=poses,
        seed=task.get_seed(),
        steps=task.get_steps(),
        negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
        width=task.get_width(),
        height=task.get_height(),
        guidance_scale=task.get_po_guidance_scale(),
        **lora_patcher.kwargs(),
    )

    generated_image_urls = upload_images(images, s3_outkey, task.get_taskId())

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def text2img(task: Task):
    prompt, ori_prompt = get_patched_prompt(task)

    lora_patcher = lora_style.get_patcher(text2img_pipe.pipe, task.get_style())
    lora_patcher.patch()

    torch.manual_seed(task.get_seed())

    images, has_nsfw = text2img_pipe.process(
        prompt=ori_prompt,
        modified_prompts=prompt,
        num_inference_steps=task.get_steps(),
        guidance_scale=7.5,
        height=task.get_height(),
        width=task.get_width(),
        negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
        iteration=task.get_iteration(),
        **lora_patcher.kwargs(),
    )

    generated_image_urls = upload_images(images, "", task.get_taskId())

    lora_patcher.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def img2img(task: Task):
    prompt, _ = get_patched_prompt(task)

    lora_patcher = lora_style.get_patcher(img2img_pipe.pipe, task.get_style())
    lora_patcher.patch()

    torch.manual_seed(task.get_seed())

    images, has_nsfw = img2img_pipe.process(
        prompt=prompt,
        imageUrl=task.get_imageUrl(),
        negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
        steps=task.get_steps(),
        width=task.get_width(),
        height=task.get_height(),
        strength=task.get_i2i_strength(),
        guidance_scale=task.get_i2i_guidance_scale(),
        **lora_patcher.kwargs(),
    )

    generated_image_urls = upload_images(images, "_imgtoimg", task.get_taskId())

    lora_patcher.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


def model_fn(model_dir):
    print("Logs: model loaded .... starts")

    set_root_dir(__file__)

    FailureHandler.register()

    avatar.load_local()

    prompt_modifier.load()
    img2text.load()
    img_classifier.load()

    lora_style.load(model_dir)
    safety_checker.load()

    controlnet.load(model_dir)
    text2img_pipe.load(model_dir)
    img2img_pipe.create(text2img_pipe)

    safety_checker.apply(text2img_pipe)
    safety_checker.apply(img2img_pipe)
    safety_checker.apply(controlnet)

    print("Logs: model loaded ....")
    return


@FailureHandler.clear
def predict_fn(data, pipe):
    task = Task(data)
    print("task is ", data)

    FailureHandler.handle(task)

    try:
        # Set set_environment
        set_configs_from_task(task)

        # Apply arguments
        apply_style_args(data)

        # Re-fetch styles
        lora_style.fetch_styles()

        # Fetch avatars
        avatar.fetch_from_network(task.get_model_id())

        task_type = task.get_type()

        if task_type == TaskType.TEXT_TO_IMAGE:
            # character sheet
            if "character sheet" in task.get_prompt().lower():
                return pose(task, s3_outkey="", poses=pickPoses())
            else:
                return text2img(task)
        elif task_type == TaskType.IMAGE_TO_IMAGE:
            return img2img(task)
        elif task_type == TaskType.CANNY:
            return canny(task)
        elif task_type == TaskType.POSE:
            return pose(task)
        elif task_type == TaskType.TILE_UPSCALE:
            return tile_upscale(task)
        else:
            raise Exception("Invalid task type")
    except Exception as e:
        print(f"Error: {e}")
        slack.error_alert(task, e)
        return None