File size: 10,662 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from six.moves import range
from PIL import Image
import numpy as np
import io
import time
import math
import random
import sys
from collections import defaultdict
from copy import deepcopy
from itertools import combinations
from functools import reduce
from tqdm import tqdm

from memory_profiler import profile

def countless5(a,b,c,d,e):
  """First stage of generalizing from countless2d. 

  You have five slots: A, B, C, D, E

  You can decide if something is the winner by first checking for 
  matches of three, then matches of two, then picking just one if 
  the other two tries fail. In countless2d, you just check for matches
  of two and then pick one of them otherwise.

  Unfortunately, you need to check ABC, ABD, ABE, BCD, BDE, & CDE.
  Then you need to check AB, AC, AD, BC, BD
  We skip checking E because if none of these match, we pick E. We can
  skip checking AE, BE, CE, DE since if any of those match, E is our boy
  so it's redundant.

  So countless grows cominatorially in complexity.
  """
  sections = [ a,b,c,d,e ]

  p2 = lambda q,r: q * (q == r) # q if p == q else 0
  p3 = lambda q,r,s: q * ( (q == r) & (r == s) ) # q if q == r == s else 0

  lor = lambda x,y: x + (x == 0) * y

  results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) )
  results3 = reduce(lor, results3)

  results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) )
  results2 = reduce(lor, results2)

  return reduce(lor, (results3, results2, e))

def countless8(a,b,c,d,e,f,g,h):
  """Extend countless5 to countless8. Same deal, except we also
    need to check for matches of length 4."""
  sections = [ a, b, c, d, e, f, g, h ]
  
  p2 = lambda q,r: q * (q == r)
  p3 = lambda q,r,s: q * ( (q == r) & (r == s) )
  p4 = lambda p,q,r,s: p * ( (p == q) & (q == r) & (r == s) )

  lor = lambda x,y: x + (x == 0) * y

  results4 = ( p4(x,y,z,w) for x,y,z,w in combinations(sections, 4) )
  results4 = reduce(lor, results4)

  results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) )
  results3 = reduce(lor, results3)

  # We can always use our shortcut of omitting the last element
  # for N choose 2 
  results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) )
  results2 = reduce(lor, results2)

  return reduce(lor, [ results4, results3, results2, h ])

def dynamic_countless3d(data):
  """countless8 + dynamic programming. ~2x faster"""
  sections = []

  # shift zeros up one so they don't interfere with bitwise operators
  # we'll shift down at the end
  data += 1 
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)
  
  pick = lambda a,b: a * (a == b)
  lor = lambda x,y: x + (x == 0) * y

  subproblems2 = {}

  results2 = None
  for x,y in combinations(range(7), 2):
    res = pick(sections[x], sections[y])
    subproblems2[(x,y)] = res
    if results2 is not None:
      results2 += (results2 == 0) * res
    else:
      results2 = res

  subproblems3 = {}

  results3 = None
  for x,y,z in combinations(range(8), 3):
    res = pick(subproblems2[(x,y)], sections[z])

    if z != 7:
      subproblems3[(x,y,z)] = res

    if results3 is not None:
      results3 += (results3 == 0) * res
    else:
      results3 = res

  results3 = reduce(lor, (results3, results2, sections[-1]))

  # free memory
  results2 = None
  subproblems2 = None 
  res = None

  results4 = ( pick(subproblems3[(x,y,z)], sections[w]) for x,y,z,w in combinations(range(8), 4) )
  results4 = reduce(lor, results4) 
  subproblems3 = None # free memory

  final_result = lor(results4, results3) - 1
  data -= 1
  return final_result

def countless3d(data):
  """Now write countless8 in such a way that it could be used
  to process an image."""
  sections = []

  # shift zeros up one so they don't interfere with bitwise operators
  # we'll shift down at the end
  data += 1 
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  p2 = lambda q,r: q * (q == r)
  p3 = lambda q,r,s: q * ( (q == r) & (r == s) )
  p4 = lambda p,q,r,s: p * ( (p == q) & (q == r) & (r == s) )

  lor = lambda x,y: x + (x == 0) * y

  results4 = ( p4(x,y,z,w) for x,y,z,w in combinations(sections, 4)  )
  results4 = reduce(lor, results4)

  results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3)  )
  results3 = reduce(lor, results3)

  results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2)  )
  results2 = reduce(lor, results2)

  final_result = reduce(lor, (results4, results3, results2, sections[-1])) - 1
  data -= 1
  return final_result

def countless_generalized(data, factor):
  assert len(data.shape) == len(factor)

  sections = []

  mode_of = reduce(lambda x,y: x * y, factor)
  majority = int(math.ceil(float(mode_of) / 2))

  data += 1
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  def pick(elements):
    eq = ( elements[i] == elements[i+1] for i in range(len(elements) - 1) )
    anded = reduce(lambda p,q: p & q, eq)
    return elements[0] * anded

  def logical_or(x,y):
    return x + (x == 0) * y

  result = ( pick(combo) for combo in combinations(sections, majority) )
  result = reduce(logical_or, result)
  for i in range(majority - 1, 3-1, -1): # 3-1 b/c of exclusive bounds
    partial_result = ( pick(combo) for combo in combinations(sections, i) )
    partial_result = reduce(logical_or, partial_result)
    result = logical_or(result, partial_result)

  partial_result = ( pick(combo) for combo in combinations(sections[:-1], 2) )
  partial_result = reduce(logical_or, partial_result)
  result = logical_or(result, partial_result)

  result = logical_or(result, sections[-1]) - 1
  data -= 1
  return result

def dynamic_countless_generalized(data, factor):
  assert len(data.shape) == len(factor)

  sections = []

  mode_of = reduce(lambda x,y: x * y, factor)
  majority = int(math.ceil(float(mode_of) / 2))

  data += 1 # offset from zero
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  pick = lambda a,b: a * (a == b)
  lor = lambda x,y: x + (x == 0) * y # logical or

  subproblems = [ {}, {} ]
  results2 = None
  for x,y in combinations(range(len(sections) - 1), 2):
    res = pick(sections[x], sections[y])
    subproblems[0][(x,y)] = res
    if results2 is not None:
      results2 = lor(results2, res)
    else:
      results2 = res

  results = [ results2 ]
  for r in range(3, majority+1):
    r_results = None
    for combo in combinations(range(len(sections)), r):
      res = pick(subproblems[0][combo[:-1]], sections[combo[-1]])
      
      if combo[-1] != len(sections) - 1:
        subproblems[1][combo] = res

      if r_results is not None:
        r_results = lor(r_results, res)
      else:
        r_results = res
    results.append(r_results)
    subproblems[0] = subproblems[1]
    subproblems[1] = {}
    
  results.reverse()
  final_result = lor(reduce(lor, results), sections[-1]) - 1
  data -= 1
  return final_result

def downsample_with_averaging(array):
  """
  Downsample x by factor using averaging.

  @return: The downsampled array, of the same type as x.
  """
  factor = (2,2,2)
  
  if np.array_equal(factor[:3], np.array([1,1,1])):
    return array

  output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor))
  temp = np.zeros(output_shape, float)
  counts = np.zeros(output_shape, np.int)
  for offset in np.ndindex(factor):
      part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
      indexing_expr = tuple(np.s_[:s] for s in part.shape)
      temp[indexing_expr] += part
      counts[indexing_expr] += 1
  return np.cast[array.dtype](temp / counts)

def downsample_with_max_pooling(array):

  factor = (2,2,2)

  sections = []

  for offset in np.ndindex(factor):
    part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  output = sections[0].copy()

  for section in sections[1:]:
    np.maximum(output, section, output)

  return output

def striding(array): 
  """Downsample x by factor using striding.

  @return: The downsampled array, of the same type as x.
  """
  factor = (2,2,2)
  if np.all(np.array(factor, int) == 1):
    return array
  return array[tuple(np.s_[::f] for f in factor)]

def benchmark():
  def countless3d_generalized(img):
    return countless_generalized(img, (2,8,1))
  def countless3d_dynamic_generalized(img):
    return dynamic_countless_generalized(img, (8,8,1))

  methods = [
    # countless3d,
    # dynamic_countless3d,
    countless3d_generalized,
    # countless3d_dynamic_generalized,
    # striding,
    # downsample_with_averaging,
    # downsample_with_max_pooling
  ]

  data = np.zeros(shape=(16**2, 16**2, 16**2), dtype=np.uint8) + 1

  N = 5

  print('Algorithm\tMPx\tMB/sec\tSec\tN=%d' % N)

  for fn in methods:
    start = time.time()
    for _ in range(N):
      result = fn(data)
    end = time.time()

    total_time = (end - start)
    mpx = N * float(data.shape[0] * data.shape[1] * data.shape[2]) / total_time / 1024.0 / 1024.0
    mbytes = mpx * np.dtype(data.dtype).itemsize
    # Output in tab separated format to enable copy-paste into excel/numbers
    print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time))

if __name__ == '__main__':
  benchmark()

# Algorithm MPx MB/sec  Sec N=5
# countless3d 10.564  10.564  60.58
# dynamic_countless3d 22.717  22.717  28.17
# countless3d_generalized 9.702 9.702 65.96
# countless3d_dynamic_generalized 22.720  22.720  28.17
# striding  253360.506  253360.506  0.00
# downsample_with_averaging 224.098 224.098 2.86
# downsample_with_max_pooling 690.474 690.474 0.93