File size: 20,045 Bytes
1bc457e
4ff5093
19b3da3
 
7fbdac4
19b3da3
7fbdac4
19b3da3
1bc457e
10230ea
19b3da3
 
 
1bc457e
19b3da3
 
0daeeb0
a3d6c18
19b3da3
42ef134
19b3da3
 
 
10230ea
1bc457e
10230ea
830fe50
10230ea
 
 
 
 
 
19b3da3
 
fd5252e
19b3da3
 
 
 
 
 
 
 
a3d6c18
0daeeb0
1bc457e
19b3da3
 
42ef134
19b3da3
 
 
 
 
 
 
 
7fbdac4
 
19b3da3
 
1bc457e
19b3da3
 
1bc457e
 
 
 
86248f3
 
19b3da3
1bc457e
 
 
0eec7f4
19b3da3
1bc457e
 
 
a3d6c18
1bc457e
19b3da3
 
 
 
 
 
 
 
1bc457e
 
10230ea
19b3da3
 
42ef134
 
 
19b3da3
 
f70725b
 
 
 
 
 
 
 
19b3da3
 
 
f70725b
19b3da3
f70725b
 
1bc457e
f70725b
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10230ea
19b3da3
 
 
 
f70725b
 
 
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
86248f3
 
 
 
 
 
1bc457e
 
10230ea
86248f3
42ef134
 
 
86248f3
 
830fe50
 
 
 
 
 
 
f70725b
830fe50
f70725b
 
 
 
 
 
 
 
 
 
1bc457e
f70725b
 
 
 
 
 
 
 
 
 
86248f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc457e
 
10230ea
86248f3
42ef134
 
 
86248f3
 
f70725b
 
 
 
 
 
 
 
 
 
 
 
1bc457e
f70725b
 
 
 
 
 
 
 
 
 
86248f3
 
 
 
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
 
 
1bc457e
 
10230ea
19b3da3
 
42ef134
 
 
19b3da3
 
f256b62
42ef134
f256b62
 
 
 
 
9d63ece
 
 
 
 
 
 
9bb133c
9d63ece
19b3da3
830fe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ff5093
f70725b
 
830fe50
f70725b
 
 
 
 
830fe50
f70725b
19b3da3
f70725b
 
 
1bc457e
f70725b
 
 
 
 
 
 
 
 
 
19b3da3
42ef134
a3d6c18
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86248f3
19b3da3
1bc457e
 
42ef134
 
 
19b3da3
 
 
 
f70725b
 
 
 
 
 
 
19b3da3
f70725b
 
 
1bc457e
f70725b
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
 
 
86248f3
19b3da3
 
 
 
 
 
 
 
 
 
 
1bc457e
 
42ef134
 
 
19b3da3
 
 
 
f70725b
 
 
 
 
 
 
 
19b3da3
f70725b
 
 
1bc457e
f70725b
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
0daeeb0
 
 
 
 
 
 
f70725b
 
 
 
 
 
 
 
 
 
 
 
04c5fb7
0daeeb0
 
10230ea
0daeeb0
 
 
 
42ef134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377831
42ef134
10230ea
42ef134
 
 
 
 
10230ea
42ef134
 
 
 
 
 
 
 
7fbdac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b71808f
10230ea
b71808f
 
1bc457e
b71808f
10230ea
 
 
b71808f
 
10230ea
 
 
fd5252e
42ef134
5c695cd
b71808f
 
10230ea
b71808f
10230ea
b71808f
10230ea
b71808f
10230ea
b71808f
10230ea
b71808f
 
 
 
19b3da3
 
 
fd5252e
 
19b3da3
 
 
 
a3d6c18
19b3da3
 
 
 
 
 
 
 
 
 
 
 
7fbdac4
 
19b3da3
 
 
 
 
 
b71808f
 
ae524a9
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
b71808f
 
 
 
19b3da3
 
 
 
 
 
 
 
0daeeb0
 
86248f3
 
 
 
42ef134
 
7fbdac4
 
1bc457e
 
19b3da3
 
 
 
a3d6c18
10230ea
 
19b3da3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import os
import traceback
from typing import List, Optional

import pydash as _
import torch
from numpy import who

import internals.util.prompt as prompt_util
from internals.data.dataAccessor import update_db, update_db_source_failed
from internals.data.task import Task, TaskType
from internals.pipelines.commons import Img2Img, Text2Img
from internals.pipelines.controlnets import ControlNet
from internals.pipelines.high_res import HighRes
from internals.pipelines.img_classifier import ImageClassifier
from internals.pipelines.img_to_text import Image2Text
from internals.pipelines.inpainter import InPainter
from internals.pipelines.pose_detector import PoseDetector
from internals.pipelines.prompt_modifier import PromptModifier
from internals.pipelines.replace_background import ReplaceBackground
from internals.pipelines.safety_checker import SafetyChecker
from internals.util.args import apply_style_args
from internals.util.avatar import Avatar
from internals.util.cache import auto_clear_cuda_and_gc, clear_cuda, clear_cuda_and_gc
from internals.util.commons import download_image, upload_image, upload_images
from internals.util.config import (
    get_is_sdxl,
    get_model_dir,
    num_return_sequences,
    set_configs_from_task,
    set_model_config,
    set_root_dir,
)
from internals.util.failure_hander import FailureHandler
from internals.util.lora_style import LoraStyle
from internals.util.model_loader import load_model_from_config
from internals.util.slack import Slack

torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True

auto_mode = False

prompt_modifier = PromptModifier(num_of_sequences=num_return_sequences)
pose_detector = PoseDetector()
inpainter = InPainter()
high_res = HighRes()
img2text = Image2Text()
img_classifier = ImageClassifier()
replace_background = ReplaceBackground()
controlnet = ControlNet()
lora_style = LoraStyle()
text2img_pipe = Text2Img()
img2img_pipe = Img2Img()
safety_checker = SafetyChecker()
slack = Slack()
avatar = Avatar()

custom_scripts: List = []


def get_patched_prompt(task: Task):
    return prompt_util.get_patched_prompt(task, avatar, lora_style, prompt_modifier)


def get_patched_prompt_text2img(task: Task):
    return prompt_util.get_patched_prompt_text2img(
        task, avatar, lora_style, prompt_modifier
    )


def get_patched_prompt_tile_upscale(task: Task):
    return prompt_util.get_patched_prompt_tile_upscale(
        task, avatar, lora_style, img_classifier, img2text
    )


def get_intermediate_dimension(task: Task):
    if task.get_high_res_fix():
        return HighRes.get_intermediate_dimension(task.get_width(), task.get_height())
    else:
        return task.get_width(), task.get_height()


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def canny(task: Task):
    prompt, _ = get_patched_prompt(task)

    width, height = get_intermediate_dimension(task)

    controlnet.load_model("canny")

    # pipe2 is used for canny and pose
    lora_patcher = lora_style.get_patcher(
        [controlnet.pipe2, high_res.pipe], task.get_style()
    )
    lora_patcher.patch()

    kwargs = {
        "prompt": prompt,
        "imageUrl": task.get_imageUrl(),
        "seed": task.get_seed(),
        "num_inference_steps": task.get_steps(),
        "width": width,
        "height": height,
        "negative_prompt": [
            f"monochrome, neon, x-ray, negative image, oversaturated, {task.get_negative_prompt()}"
        ]
        * num_return_sequences,
        **task.cnc_kwargs(),
        **lora_patcher.kwargs(),
    }
    images, has_nsfw = controlnet.process(**kwargs)
    if task.get_high_res_fix():
        kwargs = {
            "prompt": prompt,
            "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
            "images": images,
            "width": task.get_width(),
            "height": task.get_height(),
            "num_inference_steps": task.get_steps(),
            **task.high_res_kwargs(),
        }
        images, _ = high_res.apply(**kwargs)

    generated_image_urls = upload_images(images, "_canny", task.get_taskId())

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def tile_upscale(task: Task):
    output_key = "crecoAI/{}_tile_upscaler.png".format(task.get_taskId())

    prompt = get_patched_prompt_tile_upscale(task)

    controlnet.load_model("tile_upscaler")

    lora_patcher = lora_style.get_patcher(controlnet.pipe, task.get_style())
    lora_patcher.patch()

    kwargs = {
        "imageUrl": task.get_imageUrl(),
        "seed": task.get_seed(),
        "num_inference_steps": task.get_steps(),
        "negative_prompt": task.get_negative_prompt(),
        "width": task.get_width(),
        "height": task.get_height(),
        "prompt": prompt,
        "resize_dimension": task.get_resize_dimension(),
        **task.cnt_kwargs(),
    }
    images, has_nsfw = controlnet.process(**kwargs)

    generated_image_url = upload_image(images[0], output_key)

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_url": generated_image_url,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def scribble(task: Task):
    prompt, _ = get_patched_prompt(task)

    width, height = get_intermediate_dimension(task)

    controlnet.load_model("scribble")

    lora_patcher = lora_style.get_patcher(
        [controlnet.pipe2, high_res.pipe], task.get_style()
    )
    lora_patcher.patch()

    image = download_image(task.get_imageUrl()).resize((width, height))
    if get_is_sdxl():
        # We use sketch in SDXL
        image = ControlNet.pidinet_image(image)
    else:
        image = ControlNet.scribble_image(image)

    kwargs = {
        "image": [image] * num_return_sequences,
        "seed": task.get_seed(),
        "num_inference_steps": task.get_steps(),
        "width": width,
        "height": height,
        "prompt": prompt,
        "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
        **task.cns_kwargs(),
    }
    images, has_nsfw = controlnet.process(**kwargs)

    if task.get_high_res_fix():
        kwargs = {
            "prompt": prompt,
            "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
            "images": images,
            "width": task.get_width(),
            "height": task.get_height(),
            "num_inference_steps": task.get_steps(),
            **task.high_res_kwargs(),
        }
        images, _ = high_res.apply(**kwargs)

    generated_image_urls = upload_images(images, "_scribble", task.get_taskId())

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def linearart(task: Task):
    prompt, _ = get_patched_prompt(task)

    width, height = get_intermediate_dimension(task)

    controlnet.load_model("linearart")

    lora_patcher = lora_style.get_patcher(
        [controlnet.pipe2, high_res.pipe], task.get_style()
    )
    lora_patcher.patch()

    kwargs = {
        "imageUrl": task.get_imageUrl(),
        "seed": task.get_seed(),
        "num_inference_steps": task.get_steps(),
        "width": width,
        "height": height,
        "prompt": prompt,
        "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
        **task.cnl_kwargs(),
    }
    images, has_nsfw = controlnet.process(**kwargs)

    if task.get_high_res_fix():
        kwargs = {
            "prompt": prompt,
            "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
            "images": images,
            "width": task.get_width(),
            "height": task.get_height(),
            "num_inference_steps": task.get_steps(),
            **task.high_res_kwargs(),
        }
        images, _ = high_res.apply(**kwargs)

    generated_image_urls = upload_images(images, "_linearart", task.get_taskId())

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def pose(task: Task, s3_outkey: str = "_pose", poses: Optional[list] = None):
    prompt, _ = get_patched_prompt(task)

    width, height = get_intermediate_dimension(task)

    controlnet.load_model("pose")

    # pipe2 is used for canny and pose
    lora_patcher = lora_style.get_patcher(
        [controlnet.pipe2, high_res.pipe], task.get_style()
    )
    lora_patcher.patch()

    if not task.get_pose_estimation():
        print("Not detecting pose")
        pose = download_image(task.get_imageUrl()).resize(
            (task.get_width(), task.get_height())
        )
        poses = [pose] * num_return_sequences
    elif task.get_pose_coordinates():
        infered_pose = pose_detector.transform(
            image=task.get_imageUrl(),
            client_coordinates=task.get_pose_coordinates(),
            width=task.get_width(),
            height=task.get_height(),
        )
        poses = [infered_pose] * num_return_sequences
    else:
        poses = [controlnet.detect_pose(task.get_imageUrl())] * num_return_sequences

    if not get_is_sdxl():
        # in normal pipeline we use depth + pose controlnet
        depth = download_image(task.get_auxilary_imageUrl()).resize(
            (task.get_width(), task.get_height())
        )
        depth = ControlNet.depth_image(depth)
        images = [depth, poses[0]]

        upload_image(depth, "crecoAI/{}_depth.png".format(task.get_taskId()))

        kwargs = {
            "control_guidance_end": [0.5, 1.0],
        }
    else:
        images = poses[0]
        kwargs = {}

    kwargs = {
        "prompt": prompt,
        "image": images,
        "seed": task.get_seed(),
        "num_inference_steps": task.get_steps(),
        "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
        "width": width,
        "height": height,
        **kwargs,
        **task.cnp_kwargs(),
        **lora_patcher.kwargs(),
    }
    images, has_nsfw = controlnet.process(**kwargs)

    if task.get_high_res_fix():
        kwargs = {
            "prompt": prompt,
            "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
            "images": images,
            "width": task.get_width(),
            "height": task.get_height(),
            "num_inference_steps": task.get_steps(),
            **task.high_res_kwargs(),
        }
        images, _ = high_res.apply(**kwargs)

    upload_image(poses[0], "crecoAI/{}_pose.png".format(task.get_taskId()))

    generated_image_urls = upload_images(images, s3_outkey, task.get_taskId())

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def text2img(task: Task):
    params = get_patched_prompt_text2img(task)

    width, height = get_intermediate_dimension(task)

    lora_patcher = lora_style.get_patcher(
        [text2img_pipe.pipe, high_res.pipe], task.get_style()
    )
    lora_patcher.patch()

    torch.manual_seed(task.get_seed())

    kwargs = {
        "params": params,
        "num_inference_steps": task.get_steps(),
        "height": height,
        "width": width,
        "negative_prompt": task.get_negative_prompt(),
        **task.t2i_kwargs(),
        **lora_patcher.kwargs(),
    }
    images, has_nsfw = text2img_pipe.process(**kwargs)

    if task.get_high_res_fix():
        kwargs = {
            "prompt": params.prompt if params.prompt else [""] * num_return_sequences,
            "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
            "images": images,
            "width": task.get_width(),
            "height": task.get_height(),
            "num_inference_steps": task.get_steps(),
            **task.high_res_kwargs(),
        }
        images, _ = high_res.apply(**kwargs)

    generated_image_urls = upload_images(images, "", task.get_taskId())

    lora_patcher.cleanup()

    return {
        **params.__dict__,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def img2img(task: Task):
    prompt, _ = get_patched_prompt(task)

    width, height = get_intermediate_dimension(task)

    lora_patcher = lora_style.get_patcher(
        [img2img_pipe.pipe, high_res.pipe], task.get_style()
    )
    lora_patcher.patch()

    torch.manual_seed(task.get_seed())

    kwargs = {
        "prompt": prompt,
        "imageUrl": task.get_imageUrl(),
        "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
        "num_inference_steps": task.get_steps(),
        "width": width,
        "height": height,
        **task.i2i_kwargs(),
        **lora_patcher.kwargs(),
    }
    images, has_nsfw = img2img_pipe.process(**kwargs)

    if task.get_high_res_fix():
        kwargs = {
            "prompt": prompt,
            "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
            "images": images,
            "width": task.get_width(),
            "height": task.get_height(),
            "num_inference_steps": task.get_steps(),
            **task.high_res_kwargs(),
        }
        images, _ = high_res.apply(**kwargs)

    generated_image_urls = upload_images(images, "_imgtoimg", task.get_taskId())

    lora_patcher.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@slack.auto_send_alert
def inpaint(task: Task):
    prompt, _ = get_patched_prompt(task)

    print({"prompts": prompt})

    kwargs = {
        "prompt": prompt,
        "image_url": task.get_imageUrl(),
        "mask_image_url": task.get_maskImageUrl(),
        "width": task.get_width(),
        "height": task.get_height(),
        "seed": task.get_seed(),
        "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
        "num_inference_steps": task.get_steps(),
        **task.ip_kwargs(),
    }
    images = inpainter.process(**kwargs)

    generated_image_urls = upload_images(images, "_inpaint", task.get_taskId())

    clear_cuda_and_gc()

    return {"modified_prompts": prompt, "generated_image_urls": generated_image_urls}


@update_db
@slack.auto_send_alert
def replace_bg(task: Task):
    prompt = task.get_prompt()
    if task.is_prompt_engineering():
        prompt = prompt_modifier.modify(prompt)
    else:
        prompt = [prompt] * num_return_sequences

    lora_patcher = lora_style.get_patcher(replace_background.pipe, task.get_style())
    lora_patcher.patch()

    images, has_nsfw = replace_background.replace(
        image=task.get_imageUrl(),
        prompt=prompt,
        negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
        seed=task.get_seed(),
        width=task.get_width(),
        height=task.get_height(),
        steps=task.get_steps(),
        apply_high_res=task.get_high_res_fix(),
        conditioning_scale=task.rbg_controlnet_conditioning_scale(),
        model_type=task.get_modelType(),
    )

    generated_image_urls = upload_images(images, "_replace_bg", task.get_taskId())

    lora_patcher.cleanup()
    clear_cuda_and_gc()

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


def custom_action(task: Task):
    from external.scripts import __scripts__

    global custom_scripts
    kwargs = {
        "CONTROLNET": controlnet,
        "LORASTYLE": lora_style,
    }

    torch.manual_seed(task.get_seed())

    for script in __scripts__:
        script = script.Script(**kwargs)
        existing_script = _.find(
            custom_scripts, lambda x: x.__name__ == script.__name__
        )
        if existing_script:
            script = existing_script
        else:
            custom_scripts.append(script)

        data = task.get_action_data()
        if data["name"] == script.__name__:
            return script(task, data)


def load_model_by_task(task: Task):
    if not text2img_pipe.is_loaded():
        text2img_pipe.load(get_model_dir())
        img2img_pipe.create(text2img_pipe)
        high_res.load(img2img_pipe)

        inpainter.init(text2img_pipe)
        controlnet.init(text2img_pipe)

        safety_checker.apply(text2img_pipe)
        safety_checker.apply(img2img_pipe)

    if task.get_type() == TaskType.INPAINT:
        inpainter.load()
        safety_checker.apply(inpainter)
    elif task.get_type() == TaskType.REPLACE_BG:
        replace_background.load(base=text2img_pipe, high_res=high_res)
    else:
        if task.get_type() == TaskType.TILE_UPSCALE:
            controlnet.load_model("tile_upscaler")
        elif task.get_type() == TaskType.CANNY:
            controlnet.load_model("canny")
        elif task.get_type() == TaskType.SCRIBBLE:
            controlnet.load_model("scribble")
        elif task.get_type() == TaskType.LINEARART:
            controlnet.load_model("linearart")
        elif task.get_type() == TaskType.POSE:
            controlnet.load_model("pose")

        safety_checker.apply(controlnet)


def model_fn(model_dir):
    print("Logs: model loaded .... starts")

    config = load_model_from_config(model_dir)
    set_model_config(config)
    set_root_dir(__file__)

    FailureHandler.register()

    avatar.load_local(model_dir)

    lora_style.load(model_dir)

    print("Logs: model loaded ....")
    return


@FailureHandler.clear
def predict_fn(data, pipe):
    task = Task(data)
    print("task is ", data)

    clear_cuda_and_gc()

    FailureHandler.handle(task)

    try:
        # Set set_environment
        set_configs_from_task(task)

        # Load model based on task
        load_model_by_task(task)

        # Apply arguments
        apply_style_args(data)

        # Re-fetch styles
        lora_style.fetch_styles()

        # Fetch avatars
        avatar.fetch_from_network(task.get_model_id())

        task_type = task.get_type()

        if task_type == TaskType.TEXT_TO_IMAGE:
            # character sheet
            # if "character sheet" in task.get_prompt().lower():
            #     return pose(task, s3_outkey="", poses=pickPoses())
            # else:
            return text2img(task)
        elif task_type == TaskType.IMAGE_TO_IMAGE:
            return img2img(task)
        elif task_type == TaskType.CANNY:
            return canny(task)
        elif task_type == TaskType.POSE:
            return pose(task)
        elif task_type == TaskType.TILE_UPSCALE:
            return tile_upscale(task)
        elif task_type == TaskType.INPAINT:
            return inpaint(task)
        elif task_type == TaskType.SCRIBBLE:
            return scribble(task)
        elif task_type == TaskType.LINEARART:
            return linearart(task)
        elif task_type == TaskType.REPLACE_BG:
            return replace_bg(task)
        elif task_type == TaskType.CUSTOM_ACTION:
            return custom_action(task)
        elif task_type == TaskType.SYSTEM_CMD:
            os.system(task.get_prompt())
        else:
            raise Exception("Invalid task type")
    except Exception as e:
        slack.error_alert(task, e)
        controlnet.cleanup()
        traceback.print_exc()
        update_db_source_failed(task.get_sourceId(), task.get_userId())
        return None