File size: 20,045 Bytes
1bc457e 4ff5093 19b3da3 7fbdac4 19b3da3 7fbdac4 19b3da3 1bc457e 10230ea 19b3da3 1bc457e 19b3da3 0daeeb0 a3d6c18 19b3da3 42ef134 19b3da3 10230ea 1bc457e 10230ea 830fe50 10230ea 19b3da3 fd5252e 19b3da3 a3d6c18 0daeeb0 1bc457e 19b3da3 42ef134 19b3da3 7fbdac4 19b3da3 1bc457e 19b3da3 1bc457e 86248f3 19b3da3 1bc457e 0eec7f4 19b3da3 1bc457e a3d6c18 1bc457e 19b3da3 1bc457e 10230ea 19b3da3 42ef134 19b3da3 f70725b 19b3da3 f70725b 19b3da3 f70725b 1bc457e f70725b 19b3da3 10230ea 19b3da3 f70725b 19b3da3 86248f3 1bc457e 10230ea 86248f3 42ef134 86248f3 830fe50 f70725b 830fe50 f70725b 1bc457e f70725b 86248f3 1bc457e 10230ea 86248f3 42ef134 86248f3 f70725b 1bc457e f70725b 86248f3 19b3da3 1bc457e 10230ea 19b3da3 42ef134 19b3da3 f256b62 42ef134 f256b62 9d63ece 9bb133c 9d63ece 19b3da3 830fe50 4ff5093 f70725b 830fe50 f70725b 830fe50 f70725b 19b3da3 f70725b 1bc457e f70725b 19b3da3 42ef134 a3d6c18 19b3da3 86248f3 19b3da3 1bc457e 42ef134 19b3da3 f70725b 19b3da3 f70725b 1bc457e f70725b 19b3da3 86248f3 19b3da3 1bc457e 42ef134 19b3da3 f70725b 19b3da3 f70725b 1bc457e f70725b 19b3da3 0daeeb0 f70725b 04c5fb7 0daeeb0 10230ea 0daeeb0 42ef134 1377831 42ef134 10230ea 42ef134 10230ea 42ef134 7fbdac4 b71808f 10230ea b71808f 1bc457e b71808f 10230ea b71808f 10230ea fd5252e 42ef134 5c695cd b71808f 10230ea b71808f 10230ea b71808f 10230ea b71808f 10230ea b71808f 10230ea b71808f 19b3da3 fd5252e 19b3da3 a3d6c18 19b3da3 7fbdac4 19b3da3 b71808f ae524a9 19b3da3 b71808f 19b3da3 0daeeb0 86248f3 42ef134 7fbdac4 1bc457e 19b3da3 a3d6c18 10230ea 19b3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
import os
import traceback
from typing import List, Optional
import pydash as _
import torch
from numpy import who
import internals.util.prompt as prompt_util
from internals.data.dataAccessor import update_db, update_db_source_failed
from internals.data.task import Task, TaskType
from internals.pipelines.commons import Img2Img, Text2Img
from internals.pipelines.controlnets import ControlNet
from internals.pipelines.high_res import HighRes
from internals.pipelines.img_classifier import ImageClassifier
from internals.pipelines.img_to_text import Image2Text
from internals.pipelines.inpainter import InPainter
from internals.pipelines.pose_detector import PoseDetector
from internals.pipelines.prompt_modifier import PromptModifier
from internals.pipelines.replace_background import ReplaceBackground
from internals.pipelines.safety_checker import SafetyChecker
from internals.util.args import apply_style_args
from internals.util.avatar import Avatar
from internals.util.cache import auto_clear_cuda_and_gc, clear_cuda, clear_cuda_and_gc
from internals.util.commons import download_image, upload_image, upload_images
from internals.util.config import (
get_is_sdxl,
get_model_dir,
num_return_sequences,
set_configs_from_task,
set_model_config,
set_root_dir,
)
from internals.util.failure_hander import FailureHandler
from internals.util.lora_style import LoraStyle
from internals.util.model_loader import load_model_from_config
from internals.util.slack import Slack
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
auto_mode = False
prompt_modifier = PromptModifier(num_of_sequences=num_return_sequences)
pose_detector = PoseDetector()
inpainter = InPainter()
high_res = HighRes()
img2text = Image2Text()
img_classifier = ImageClassifier()
replace_background = ReplaceBackground()
controlnet = ControlNet()
lora_style = LoraStyle()
text2img_pipe = Text2Img()
img2img_pipe = Img2Img()
safety_checker = SafetyChecker()
slack = Slack()
avatar = Avatar()
custom_scripts: List = []
def get_patched_prompt(task: Task):
return prompt_util.get_patched_prompt(task, avatar, lora_style, prompt_modifier)
def get_patched_prompt_text2img(task: Task):
return prompt_util.get_patched_prompt_text2img(
task, avatar, lora_style, prompt_modifier
)
def get_patched_prompt_tile_upscale(task: Task):
return prompt_util.get_patched_prompt_tile_upscale(
task, avatar, lora_style, img_classifier, img2text
)
def get_intermediate_dimension(task: Task):
if task.get_high_res_fix():
return HighRes.get_intermediate_dimension(task.get_width(), task.get_height())
else:
return task.get_width(), task.get_height()
@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def canny(task: Task):
prompt, _ = get_patched_prompt(task)
width, height = get_intermediate_dimension(task)
controlnet.load_model("canny")
# pipe2 is used for canny and pose
lora_patcher = lora_style.get_patcher(
[controlnet.pipe2, high_res.pipe], task.get_style()
)
lora_patcher.patch()
kwargs = {
"prompt": prompt,
"imageUrl": task.get_imageUrl(),
"seed": task.get_seed(),
"num_inference_steps": task.get_steps(),
"width": width,
"height": height,
"negative_prompt": [
f"monochrome, neon, x-ray, negative image, oversaturated, {task.get_negative_prompt()}"
]
* num_return_sequences,
**task.cnc_kwargs(),
**lora_patcher.kwargs(),
}
images, has_nsfw = controlnet.process(**kwargs)
if task.get_high_res_fix():
kwargs = {
"prompt": prompt,
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"images": images,
"width": task.get_width(),
"height": task.get_height(),
"num_inference_steps": task.get_steps(),
**task.high_res_kwargs(),
}
images, _ = high_res.apply(**kwargs)
generated_image_urls = upload_images(images, "_canny", task.get_taskId())
lora_patcher.cleanup()
controlnet.cleanup()
return {
"modified_prompts": prompt,
"generated_image_urls": generated_image_urls,
"has_nsfw": has_nsfw,
}
@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def tile_upscale(task: Task):
output_key = "crecoAI/{}_tile_upscaler.png".format(task.get_taskId())
prompt = get_patched_prompt_tile_upscale(task)
controlnet.load_model("tile_upscaler")
lora_patcher = lora_style.get_patcher(controlnet.pipe, task.get_style())
lora_patcher.patch()
kwargs = {
"imageUrl": task.get_imageUrl(),
"seed": task.get_seed(),
"num_inference_steps": task.get_steps(),
"negative_prompt": task.get_negative_prompt(),
"width": task.get_width(),
"height": task.get_height(),
"prompt": prompt,
"resize_dimension": task.get_resize_dimension(),
**task.cnt_kwargs(),
}
images, has_nsfw = controlnet.process(**kwargs)
generated_image_url = upload_image(images[0], output_key)
lora_patcher.cleanup()
controlnet.cleanup()
return {
"modified_prompts": prompt,
"generated_image_url": generated_image_url,
"has_nsfw": has_nsfw,
}
@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def scribble(task: Task):
prompt, _ = get_patched_prompt(task)
width, height = get_intermediate_dimension(task)
controlnet.load_model("scribble")
lora_patcher = lora_style.get_patcher(
[controlnet.pipe2, high_res.pipe], task.get_style()
)
lora_patcher.patch()
image = download_image(task.get_imageUrl()).resize((width, height))
if get_is_sdxl():
# We use sketch in SDXL
image = ControlNet.pidinet_image(image)
else:
image = ControlNet.scribble_image(image)
kwargs = {
"image": [image] * num_return_sequences,
"seed": task.get_seed(),
"num_inference_steps": task.get_steps(),
"width": width,
"height": height,
"prompt": prompt,
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
**task.cns_kwargs(),
}
images, has_nsfw = controlnet.process(**kwargs)
if task.get_high_res_fix():
kwargs = {
"prompt": prompt,
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"images": images,
"width": task.get_width(),
"height": task.get_height(),
"num_inference_steps": task.get_steps(),
**task.high_res_kwargs(),
}
images, _ = high_res.apply(**kwargs)
generated_image_urls = upload_images(images, "_scribble", task.get_taskId())
lora_patcher.cleanup()
controlnet.cleanup()
return {
"modified_prompts": prompt,
"generated_image_urls": generated_image_urls,
"has_nsfw": has_nsfw,
}
@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def linearart(task: Task):
prompt, _ = get_patched_prompt(task)
width, height = get_intermediate_dimension(task)
controlnet.load_model("linearart")
lora_patcher = lora_style.get_patcher(
[controlnet.pipe2, high_res.pipe], task.get_style()
)
lora_patcher.patch()
kwargs = {
"imageUrl": task.get_imageUrl(),
"seed": task.get_seed(),
"num_inference_steps": task.get_steps(),
"width": width,
"height": height,
"prompt": prompt,
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
**task.cnl_kwargs(),
}
images, has_nsfw = controlnet.process(**kwargs)
if task.get_high_res_fix():
kwargs = {
"prompt": prompt,
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"images": images,
"width": task.get_width(),
"height": task.get_height(),
"num_inference_steps": task.get_steps(),
**task.high_res_kwargs(),
}
images, _ = high_res.apply(**kwargs)
generated_image_urls = upload_images(images, "_linearart", task.get_taskId())
lora_patcher.cleanup()
controlnet.cleanup()
return {
"modified_prompts": prompt,
"generated_image_urls": generated_image_urls,
"has_nsfw": has_nsfw,
}
@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def pose(task: Task, s3_outkey: str = "_pose", poses: Optional[list] = None):
prompt, _ = get_patched_prompt(task)
width, height = get_intermediate_dimension(task)
controlnet.load_model("pose")
# pipe2 is used for canny and pose
lora_patcher = lora_style.get_patcher(
[controlnet.pipe2, high_res.pipe], task.get_style()
)
lora_patcher.patch()
if not task.get_pose_estimation():
print("Not detecting pose")
pose = download_image(task.get_imageUrl()).resize(
(task.get_width(), task.get_height())
)
poses = [pose] * num_return_sequences
elif task.get_pose_coordinates():
infered_pose = pose_detector.transform(
image=task.get_imageUrl(),
client_coordinates=task.get_pose_coordinates(),
width=task.get_width(),
height=task.get_height(),
)
poses = [infered_pose] * num_return_sequences
else:
poses = [controlnet.detect_pose(task.get_imageUrl())] * num_return_sequences
if not get_is_sdxl():
# in normal pipeline we use depth + pose controlnet
depth = download_image(task.get_auxilary_imageUrl()).resize(
(task.get_width(), task.get_height())
)
depth = ControlNet.depth_image(depth)
images = [depth, poses[0]]
upload_image(depth, "crecoAI/{}_depth.png".format(task.get_taskId()))
kwargs = {
"control_guidance_end": [0.5, 1.0],
}
else:
images = poses[0]
kwargs = {}
kwargs = {
"prompt": prompt,
"image": images,
"seed": task.get_seed(),
"num_inference_steps": task.get_steps(),
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"width": width,
"height": height,
**kwargs,
**task.cnp_kwargs(),
**lora_patcher.kwargs(),
}
images, has_nsfw = controlnet.process(**kwargs)
if task.get_high_res_fix():
kwargs = {
"prompt": prompt,
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"images": images,
"width": task.get_width(),
"height": task.get_height(),
"num_inference_steps": task.get_steps(),
**task.high_res_kwargs(),
}
images, _ = high_res.apply(**kwargs)
upload_image(poses[0], "crecoAI/{}_pose.png".format(task.get_taskId()))
generated_image_urls = upload_images(images, s3_outkey, task.get_taskId())
lora_patcher.cleanup()
controlnet.cleanup()
return {
"modified_prompts": prompt,
"generated_image_urls": generated_image_urls,
"has_nsfw": has_nsfw,
}
@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def text2img(task: Task):
params = get_patched_prompt_text2img(task)
width, height = get_intermediate_dimension(task)
lora_patcher = lora_style.get_patcher(
[text2img_pipe.pipe, high_res.pipe], task.get_style()
)
lora_patcher.patch()
torch.manual_seed(task.get_seed())
kwargs = {
"params": params,
"num_inference_steps": task.get_steps(),
"height": height,
"width": width,
"negative_prompt": task.get_negative_prompt(),
**task.t2i_kwargs(),
**lora_patcher.kwargs(),
}
images, has_nsfw = text2img_pipe.process(**kwargs)
if task.get_high_res_fix():
kwargs = {
"prompt": params.prompt if params.prompt else [""] * num_return_sequences,
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"images": images,
"width": task.get_width(),
"height": task.get_height(),
"num_inference_steps": task.get_steps(),
**task.high_res_kwargs(),
}
images, _ = high_res.apply(**kwargs)
generated_image_urls = upload_images(images, "", task.get_taskId())
lora_patcher.cleanup()
return {
**params.__dict__,
"generated_image_urls": generated_image_urls,
"has_nsfw": has_nsfw,
}
@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def img2img(task: Task):
prompt, _ = get_patched_prompt(task)
width, height = get_intermediate_dimension(task)
lora_patcher = lora_style.get_patcher(
[img2img_pipe.pipe, high_res.pipe], task.get_style()
)
lora_patcher.patch()
torch.manual_seed(task.get_seed())
kwargs = {
"prompt": prompt,
"imageUrl": task.get_imageUrl(),
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"num_inference_steps": task.get_steps(),
"width": width,
"height": height,
**task.i2i_kwargs(),
**lora_patcher.kwargs(),
}
images, has_nsfw = img2img_pipe.process(**kwargs)
if task.get_high_res_fix():
kwargs = {
"prompt": prompt,
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"images": images,
"width": task.get_width(),
"height": task.get_height(),
"num_inference_steps": task.get_steps(),
**task.high_res_kwargs(),
}
images, _ = high_res.apply(**kwargs)
generated_image_urls = upload_images(images, "_imgtoimg", task.get_taskId())
lora_patcher.cleanup()
return {
"modified_prompts": prompt,
"generated_image_urls": generated_image_urls,
"has_nsfw": has_nsfw,
}
@update_db
@slack.auto_send_alert
def inpaint(task: Task):
prompt, _ = get_patched_prompt(task)
print({"prompts": prompt})
kwargs = {
"prompt": prompt,
"image_url": task.get_imageUrl(),
"mask_image_url": task.get_maskImageUrl(),
"width": task.get_width(),
"height": task.get_height(),
"seed": task.get_seed(),
"negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
"num_inference_steps": task.get_steps(),
**task.ip_kwargs(),
}
images = inpainter.process(**kwargs)
generated_image_urls = upload_images(images, "_inpaint", task.get_taskId())
clear_cuda_and_gc()
return {"modified_prompts": prompt, "generated_image_urls": generated_image_urls}
@update_db
@slack.auto_send_alert
def replace_bg(task: Task):
prompt = task.get_prompt()
if task.is_prompt_engineering():
prompt = prompt_modifier.modify(prompt)
else:
prompt = [prompt] * num_return_sequences
lora_patcher = lora_style.get_patcher(replace_background.pipe, task.get_style())
lora_patcher.patch()
images, has_nsfw = replace_background.replace(
image=task.get_imageUrl(),
prompt=prompt,
negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
seed=task.get_seed(),
width=task.get_width(),
height=task.get_height(),
steps=task.get_steps(),
apply_high_res=task.get_high_res_fix(),
conditioning_scale=task.rbg_controlnet_conditioning_scale(),
model_type=task.get_modelType(),
)
generated_image_urls = upload_images(images, "_replace_bg", task.get_taskId())
lora_patcher.cleanup()
clear_cuda_and_gc()
return {
"modified_prompts": prompt,
"generated_image_urls": generated_image_urls,
"has_nsfw": has_nsfw,
}
def custom_action(task: Task):
from external.scripts import __scripts__
global custom_scripts
kwargs = {
"CONTROLNET": controlnet,
"LORASTYLE": lora_style,
}
torch.manual_seed(task.get_seed())
for script in __scripts__:
script = script.Script(**kwargs)
existing_script = _.find(
custom_scripts, lambda x: x.__name__ == script.__name__
)
if existing_script:
script = existing_script
else:
custom_scripts.append(script)
data = task.get_action_data()
if data["name"] == script.__name__:
return script(task, data)
def load_model_by_task(task: Task):
if not text2img_pipe.is_loaded():
text2img_pipe.load(get_model_dir())
img2img_pipe.create(text2img_pipe)
high_res.load(img2img_pipe)
inpainter.init(text2img_pipe)
controlnet.init(text2img_pipe)
safety_checker.apply(text2img_pipe)
safety_checker.apply(img2img_pipe)
if task.get_type() == TaskType.INPAINT:
inpainter.load()
safety_checker.apply(inpainter)
elif task.get_type() == TaskType.REPLACE_BG:
replace_background.load(base=text2img_pipe, high_res=high_res)
else:
if task.get_type() == TaskType.TILE_UPSCALE:
controlnet.load_model("tile_upscaler")
elif task.get_type() == TaskType.CANNY:
controlnet.load_model("canny")
elif task.get_type() == TaskType.SCRIBBLE:
controlnet.load_model("scribble")
elif task.get_type() == TaskType.LINEARART:
controlnet.load_model("linearart")
elif task.get_type() == TaskType.POSE:
controlnet.load_model("pose")
safety_checker.apply(controlnet)
def model_fn(model_dir):
print("Logs: model loaded .... starts")
config = load_model_from_config(model_dir)
set_model_config(config)
set_root_dir(__file__)
FailureHandler.register()
avatar.load_local(model_dir)
lora_style.load(model_dir)
print("Logs: model loaded ....")
return
@FailureHandler.clear
def predict_fn(data, pipe):
task = Task(data)
print("task is ", data)
clear_cuda_and_gc()
FailureHandler.handle(task)
try:
# Set set_environment
set_configs_from_task(task)
# Load model based on task
load_model_by_task(task)
# Apply arguments
apply_style_args(data)
# Re-fetch styles
lora_style.fetch_styles()
# Fetch avatars
avatar.fetch_from_network(task.get_model_id())
task_type = task.get_type()
if task_type == TaskType.TEXT_TO_IMAGE:
# character sheet
# if "character sheet" in task.get_prompt().lower():
# return pose(task, s3_outkey="", poses=pickPoses())
# else:
return text2img(task)
elif task_type == TaskType.IMAGE_TO_IMAGE:
return img2img(task)
elif task_type == TaskType.CANNY:
return canny(task)
elif task_type == TaskType.POSE:
return pose(task)
elif task_type == TaskType.TILE_UPSCALE:
return tile_upscale(task)
elif task_type == TaskType.INPAINT:
return inpaint(task)
elif task_type == TaskType.SCRIBBLE:
return scribble(task)
elif task_type == TaskType.LINEARART:
return linearart(task)
elif task_type == TaskType.REPLACE_BG:
return replace_bg(task)
elif task_type == TaskType.CUSTOM_ACTION:
return custom_action(task)
elif task_type == TaskType.SYSTEM_CMD:
os.system(task.get_prompt())
else:
raise Exception("Invalid task type")
except Exception as e:
slack.error_alert(task, e)
controlnet.cleanup()
traceback.print_exc()
update_db_source_failed(task.get_sourceId(), task.get_userId())
return None
|