File size: 23,226 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import logging
from abc import abstractmethod, ABC

import numpy as np
import sklearn
import sklearn.svm
import torch
import torch.nn as nn
import torch.nn.functional as F
from joblib import Parallel, delayed
from scipy import linalg

from models.ade20k import SegmentationModule, NUM_CLASS, segm_options
from .fid.inception import InceptionV3
from .lpips import PerceptualLoss
from .ssim import SSIM

LOGGER = logging.getLogger(__name__)


def get_groupings(groups):
    """
    :param groups: group numbers for respective elements
    :return: dict of kind {group_idx: indices of the corresponding group elements}
    """
    label_groups, count_groups = np.unique(groups, return_counts=True)

    indices = np.argsort(groups)

    grouping = dict()
    cur_start = 0
    for label, count in zip(label_groups, count_groups):
        cur_end = cur_start + count
        cur_indices = indices[cur_start:cur_end]
        grouping[label] = cur_indices
        cur_start = cur_end
    return grouping


class EvaluatorScore(nn.Module):
    @abstractmethod
    def forward(self, pred_batch, target_batch, mask):
        pass

    @abstractmethod
    def get_value(self, groups=None, states=None):
        pass

    @abstractmethod
    def reset(self):
        pass


class PairwiseScore(EvaluatorScore, ABC):
    def __init__(self):
        super().__init__()
        self.individual_values = None

    def get_value(self, groups=None, states=None):
        """
        :param groups:
        :return:
            total_results: dict of kind {'mean': score mean, 'std': score std}
            group_results: None, if groups is None;
                else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
        """
        individual_values = torch.stack(states, dim=0).reshape(-1).cpu().numpy() if states is not None \
            else self.individual_values

        total_results = {
            'mean': individual_values.mean(),
            'std': individual_values.std()
        }

        if groups is None:
            return total_results, None

        group_results = dict()
        grouping = get_groupings(groups)
        for label, index in grouping.items():
            group_scores = individual_values[index]
            group_results[label] = {
                'mean': group_scores.mean(),
                'std': group_scores.std()
            }
        return total_results, group_results

    def reset(self):
        self.individual_values = []


class SSIMScore(PairwiseScore):
    def __init__(self, window_size=11):
        super().__init__()
        self.score = SSIM(window_size=window_size, size_average=False).eval()
        self.reset()

    def forward(self, pred_batch, target_batch, mask=None):
        batch_values = self.score(pred_batch, target_batch)
        self.individual_values = np.hstack([
            self.individual_values, batch_values.detach().cpu().numpy()
        ])
        return batch_values


class LPIPSScore(PairwiseScore):
    def __init__(self, model='net-lin', net='vgg', model_path=None, use_gpu=True):
        super().__init__()
        self.score = PerceptualLoss(model=model, net=net, model_path=model_path,
                                    use_gpu=use_gpu, spatial=False).eval()
        self.reset()

    def forward(self, pred_batch, target_batch, mask=None):
        batch_values = self.score(pred_batch, target_batch).flatten()
        self.individual_values = np.hstack([
            self.individual_values, batch_values.detach().cpu().numpy()
        ])
        return batch_values


def fid_calculate_activation_statistics(act):
    mu = np.mean(act, axis=0)
    sigma = np.cov(act, rowvar=False)
    return mu, sigma


def calculate_frechet_distance(activations_pred, activations_target, eps=1e-6):
    mu1, sigma1 = fid_calculate_activation_statistics(activations_pred)
    mu2, sigma2 = fid_calculate_activation_statistics(activations_target)

    diff = mu1 - mu2

    # Product might be almost singular
    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ('fid calculation produces singular product; '
               'adding %s to diagonal of cov estimates') % eps
        LOGGER.warning(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        # if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-2):
            m = np.max(np.abs(covmean.imag))
            raise ValueError('Imaginary component {}'.format(m))
        covmean = covmean.real

    tr_covmean = np.trace(covmean)

    return (diff.dot(diff) + np.trace(sigma1) +
            np.trace(sigma2) - 2 * tr_covmean)


class FIDScore(EvaluatorScore):
    def __init__(self, dims=2048, eps=1e-6):
        LOGGER.info("FIDscore init called")
        super().__init__()
        if getattr(FIDScore, '_MODEL', None) is None:
            block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
            FIDScore._MODEL = InceptionV3([block_idx]).eval()
        self.model = FIDScore._MODEL
        self.eps = eps
        self.reset()
        LOGGER.info("FIDscore init done")

    def forward(self, pred_batch, target_batch, mask=None):
        activations_pred = self._get_activations(pred_batch)
        activations_target = self._get_activations(target_batch)

        self.activations_pred.append(activations_pred.detach().cpu())
        self.activations_target.append(activations_target.detach().cpu())

        return activations_pred, activations_target

    def get_value(self, groups=None, states=None):
        LOGGER.info("FIDscore get_value called")
        activations_pred, activations_target = zip(*states) if states is not None \
            else (self.activations_pred, self.activations_target)
        activations_pred = torch.cat(activations_pred).cpu().numpy()
        activations_target = torch.cat(activations_target).cpu().numpy()

        total_distance = calculate_frechet_distance(activations_pred, activations_target, eps=self.eps)
        total_results = dict(mean=total_distance)

        if groups is None:
            group_results = None
        else:
            group_results = dict()
            grouping = get_groupings(groups)
            for label, index in grouping.items():
                if len(index) > 1:
                    group_distance = calculate_frechet_distance(activations_pred[index], activations_target[index],
                                                                eps=self.eps)
                    group_results[label] = dict(mean=group_distance)

                else:
                    group_results[label] = dict(mean=float('nan'))

        self.reset()

        LOGGER.info("FIDscore get_value done")

        return total_results, group_results

    def reset(self):
        self.activations_pred = []
        self.activations_target = []

    def _get_activations(self, batch):
        activations = self.model(batch)[0]
        if activations.shape[2] != 1 or activations.shape[3] != 1:
            assert False, \
                'We should not have got here, because Inception always scales inputs to 299x299'
            # activations = F.adaptive_avg_pool2d(activations, output_size=(1, 1))
        activations = activations.squeeze(-1).squeeze(-1)
        return activations


class SegmentationAwareScore(EvaluatorScore):
    def __init__(self, weights_path):
        super().__init__()
        self.segm_network = SegmentationModule(weights_path=weights_path, use_default_normalization=True).eval()
        self.target_class_freq_by_image_total = []
        self.target_class_freq_by_image_mask = []
        self.pred_class_freq_by_image_mask = []

    def forward(self, pred_batch, target_batch, mask):
        pred_segm_flat = self.segm_network.predict(pred_batch)[0].view(pred_batch.shape[0], -1).long().detach().cpu().numpy()
        target_segm_flat = self.segm_network.predict(target_batch)[0].view(pred_batch.shape[0], -1).long().detach().cpu().numpy()
        mask_flat = (mask.view(mask.shape[0], -1) > 0.5).detach().cpu().numpy()

        batch_target_class_freq_total = []
        batch_target_class_freq_mask = []
        batch_pred_class_freq_mask = []

        for cur_pred_segm, cur_target_segm, cur_mask in zip(pred_segm_flat, target_segm_flat, mask_flat):
            cur_target_class_freq_total = np.bincount(cur_target_segm, minlength=NUM_CLASS)[None, ...]
            cur_target_class_freq_mask = np.bincount(cur_target_segm[cur_mask], minlength=NUM_CLASS)[None, ...]
            cur_pred_class_freq_mask = np.bincount(cur_pred_segm[cur_mask], minlength=NUM_CLASS)[None, ...]

            self.target_class_freq_by_image_total.append(cur_target_class_freq_total)
            self.target_class_freq_by_image_mask.append(cur_target_class_freq_mask)
            self.pred_class_freq_by_image_mask.append(cur_pred_class_freq_mask)

            batch_target_class_freq_total.append(cur_target_class_freq_total)
            batch_target_class_freq_mask.append(cur_target_class_freq_mask)
            batch_pred_class_freq_mask.append(cur_pred_class_freq_mask)

        batch_target_class_freq_total = np.concatenate(batch_target_class_freq_total, axis=0)
        batch_target_class_freq_mask = np.concatenate(batch_target_class_freq_mask, axis=0)
        batch_pred_class_freq_mask = np.concatenate(batch_pred_class_freq_mask, axis=0)
        return batch_target_class_freq_total, batch_target_class_freq_mask, batch_pred_class_freq_mask

    def reset(self):
        super().reset()
        self.target_class_freq_by_image_total = []
        self.target_class_freq_by_image_mask = []
        self.pred_class_freq_by_image_mask = []


def distribute_values_to_classes(target_class_freq_by_image_mask, values, idx2name):
    assert target_class_freq_by_image_mask.ndim == 2 and target_class_freq_by_image_mask.shape[0] == values.shape[0]
    total_class_freq = target_class_freq_by_image_mask.sum(0)
    distr_values = (target_class_freq_by_image_mask * values[..., None]).sum(0)
    result = distr_values / (total_class_freq + 1e-3)
    return {idx2name[i]: val for i, val in enumerate(result) if total_class_freq[i] > 0}


def get_segmentation_idx2name():
    return {i - 1: name for i, name in segm_options['classes'].set_index('Idx', drop=True)['Name'].to_dict().items()}


class SegmentationAwarePairwiseScore(SegmentationAwareScore):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.individual_values = []
        self.segm_idx2name = get_segmentation_idx2name()

    def forward(self, pred_batch, target_batch, mask):
        cur_class_stats = super().forward(pred_batch, target_batch, mask)
        score_values = self.calc_score(pred_batch, target_batch, mask)
        self.individual_values.append(score_values)
        return cur_class_stats + (score_values,)

    @abstractmethod
    def calc_score(self, pred_batch, target_batch, mask):
        raise NotImplementedError()

    def get_value(self, groups=None, states=None):
        """
        :param groups:
        :return:
            total_results: dict of kind {'mean': score mean, 'std': score std}
            group_results: None, if groups is None;
                else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
        """
        if states is not None:
            (target_class_freq_by_image_total,
             target_class_freq_by_image_mask,
             pred_class_freq_by_image_mask,
             individual_values) = states
        else:
            target_class_freq_by_image_total = self.target_class_freq_by_image_total
            target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
            pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask
            individual_values = self.individual_values

        target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
        target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
        pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)
        individual_values = np.concatenate(individual_values, axis=0)

        total_results = {
            'mean': individual_values.mean(),
            'std': individual_values.std(),
            **distribute_values_to_classes(target_class_freq_by_image_mask, individual_values, self.segm_idx2name)
        }

        if groups is None:
            return total_results, None

        group_results = dict()
        grouping = get_groupings(groups)
        for label, index in grouping.items():
            group_class_freq = target_class_freq_by_image_mask[index]
            group_scores = individual_values[index]
            group_results[label] = {
                'mean': group_scores.mean(),
                'std': group_scores.std(),
                ** distribute_values_to_classes(group_class_freq, group_scores, self.segm_idx2name)
            }
        return total_results, group_results

    def reset(self):
        super().reset()
        self.individual_values = []


class SegmentationClassStats(SegmentationAwarePairwiseScore):
    def calc_score(self, pred_batch, target_batch, mask):
        return 0

    def get_value(self, groups=None, states=None):
        """
        :param groups:
        :return:
            total_results: dict of kind {'mean': score mean, 'std': score std}
            group_results: None, if groups is None;
                else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
        """
        if states is not None:
            (target_class_freq_by_image_total,
             target_class_freq_by_image_mask,
             pred_class_freq_by_image_mask,
             _) = states
        else:
            target_class_freq_by_image_total = self.target_class_freq_by_image_total
            target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
            pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask

        target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
        target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
        pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)

        target_class_freq_by_image_total_marginal = target_class_freq_by_image_total.sum(0).astype('float32')
        target_class_freq_by_image_total_marginal /= target_class_freq_by_image_total_marginal.sum()

        target_class_freq_by_image_mask_marginal = target_class_freq_by_image_mask.sum(0).astype('float32')
        target_class_freq_by_image_mask_marginal /= target_class_freq_by_image_mask_marginal.sum()

        pred_class_freq_diff = (pred_class_freq_by_image_mask - target_class_freq_by_image_mask).sum(0) / (target_class_freq_by_image_mask.sum(0) + 1e-3)

        total_results = dict()
        total_results.update({f'total_freq/{self.segm_idx2name[i]}': v
                              for i, v in enumerate(target_class_freq_by_image_total_marginal)
                              if v > 0})
        total_results.update({f'mask_freq/{self.segm_idx2name[i]}': v
                              for i, v in enumerate(target_class_freq_by_image_mask_marginal)
                              if v > 0})
        total_results.update({f'mask_freq_diff/{self.segm_idx2name[i]}': v
                              for i, v in enumerate(pred_class_freq_diff)
                              if target_class_freq_by_image_total_marginal[i] > 0})

        if groups is None:
            return total_results, None

        group_results = dict()
        grouping = get_groupings(groups)
        for label, index in grouping.items():
            group_target_class_freq_by_image_total = target_class_freq_by_image_total[index]
            group_target_class_freq_by_image_mask = target_class_freq_by_image_mask[index]
            group_pred_class_freq_by_image_mask = pred_class_freq_by_image_mask[index]

            group_target_class_freq_by_image_total_marginal = group_target_class_freq_by_image_total.sum(0).astype('float32')
            group_target_class_freq_by_image_total_marginal /= group_target_class_freq_by_image_total_marginal.sum()

            group_target_class_freq_by_image_mask_marginal = group_target_class_freq_by_image_mask.sum(0).astype('float32')
            group_target_class_freq_by_image_mask_marginal /= group_target_class_freq_by_image_mask_marginal.sum()

            group_pred_class_freq_diff = (group_pred_class_freq_by_image_mask - group_target_class_freq_by_image_mask).sum(0) / (
                    group_target_class_freq_by_image_mask.sum(0) + 1e-3)

            cur_group_results = dict()
            cur_group_results.update({f'total_freq/{self.segm_idx2name[i]}': v
                                      for i, v in enumerate(group_target_class_freq_by_image_total_marginal)
                                      if v > 0})
            cur_group_results.update({f'mask_freq/{self.segm_idx2name[i]}': v
                                      for i, v in enumerate(group_target_class_freq_by_image_mask_marginal)
                                      if v > 0})
            cur_group_results.update({f'mask_freq_diff/{self.segm_idx2name[i]}': v
                                      for i, v in enumerate(group_pred_class_freq_diff)
                                      if group_target_class_freq_by_image_total_marginal[i] > 0})

            group_results[label] = cur_group_results
        return total_results, group_results


class SegmentationAwareSSIM(SegmentationAwarePairwiseScore):
    def __init__(self, *args, window_size=11, **kwargs):
        super().__init__(*args, **kwargs)
        self.score_impl = SSIM(window_size=window_size, size_average=False).eval()

    def calc_score(self, pred_batch, target_batch, mask):
        return self.score_impl(pred_batch, target_batch).detach().cpu().numpy()


class SegmentationAwareLPIPS(SegmentationAwarePairwiseScore):
    def __init__(self, *args, model='net-lin', net='vgg', model_path=None, use_gpu=True,  **kwargs):
        super().__init__(*args, **kwargs)
        self.score_impl = PerceptualLoss(model=model, net=net, model_path=model_path,
                                         use_gpu=use_gpu, spatial=False).eval()

    def calc_score(self, pred_batch, target_batch, mask):
        return self.score_impl(pred_batch, target_batch).flatten().detach().cpu().numpy()


def calculade_fid_no_img(img_i, activations_pred, activations_target, eps=1e-6):
    activations_pred = activations_pred.copy()
    activations_pred[img_i] = activations_target[img_i]
    return calculate_frechet_distance(activations_pred, activations_target, eps=eps)


class SegmentationAwareFID(SegmentationAwarePairwiseScore):
    def __init__(self, *args, dims=2048, eps=1e-6, n_jobs=-1, **kwargs):
        super().__init__(*args, **kwargs)
        if getattr(FIDScore, '_MODEL', None) is None:
            block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
            FIDScore._MODEL = InceptionV3([block_idx]).eval()
        self.model = FIDScore._MODEL
        self.eps = eps
        self.n_jobs = n_jobs

    def calc_score(self, pred_batch, target_batch, mask):
        activations_pred = self._get_activations(pred_batch)
        activations_target = self._get_activations(target_batch)
        return activations_pred, activations_target

    def get_value(self, groups=None, states=None):
        """
        :param groups:
        :return:
            total_results: dict of kind {'mean': score mean, 'std': score std}
            group_results: None, if groups is None;
                else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
        """
        if states is not None:
            (target_class_freq_by_image_total,
             target_class_freq_by_image_mask,
             pred_class_freq_by_image_mask,
             activation_pairs) = states
        else:
            target_class_freq_by_image_total = self.target_class_freq_by_image_total
            target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
            pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask
            activation_pairs = self.individual_values

        target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
        target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
        pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)
        activations_pred, activations_target = zip(*activation_pairs)
        activations_pred = np.concatenate(activations_pred, axis=0)
        activations_target = np.concatenate(activations_target, axis=0)

        total_results = {
            'mean': calculate_frechet_distance(activations_pred, activations_target, eps=self.eps),
            'std': 0,
            **self.distribute_fid_to_classes(target_class_freq_by_image_mask, activations_pred, activations_target)
        }

        if groups is None:
            return total_results, None

        group_results = dict()
        grouping = get_groupings(groups)
        for label, index in grouping.items():
            if len(index) > 1:
                group_activations_pred = activations_pred[index]
                group_activations_target = activations_target[index]
                group_class_freq = target_class_freq_by_image_mask[index]
                group_results[label] = {
                    'mean': calculate_frechet_distance(group_activations_pred, group_activations_target, eps=self.eps),
                    'std': 0,
                    **self.distribute_fid_to_classes(group_class_freq,
                                                     group_activations_pred,
                                                     group_activations_target)
                }
            else:
                group_results[label] = dict(mean=float('nan'), std=0)
        return total_results, group_results

    def distribute_fid_to_classes(self, class_freq, activations_pred, activations_target):
        real_fid = calculate_frechet_distance(activations_pred, activations_target, eps=self.eps)

        fid_no_images = Parallel(n_jobs=self.n_jobs)(
            delayed(calculade_fid_no_img)(img_i, activations_pred, activations_target, eps=self.eps)
            for img_i in range(activations_pred.shape[0])
        )
        errors = real_fid - fid_no_images
        return distribute_values_to_classes(class_freq, errors, self.segm_idx2name)

    def _get_activations(self, batch):
        activations = self.model(batch)[0]
        if activations.shape[2] != 1 or activations.shape[3] != 1:
            activations = F.adaptive_avg_pool2d(activations, output_size=(1, 1))
        activations = activations.squeeze(-1).squeeze(-1).detach().cpu().numpy()
        return activations