File size: 23,226 Bytes
19b3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import logging
from abc import abstractmethod, ABC
import numpy as np
import sklearn
import sklearn.svm
import torch
import torch.nn as nn
import torch.nn.functional as F
from joblib import Parallel, delayed
from scipy import linalg
from models.ade20k import SegmentationModule, NUM_CLASS, segm_options
from .fid.inception import InceptionV3
from .lpips import PerceptualLoss
from .ssim import SSIM
LOGGER = logging.getLogger(__name__)
def get_groupings(groups):
"""
:param groups: group numbers for respective elements
:return: dict of kind {group_idx: indices of the corresponding group elements}
"""
label_groups, count_groups = np.unique(groups, return_counts=True)
indices = np.argsort(groups)
grouping = dict()
cur_start = 0
for label, count in zip(label_groups, count_groups):
cur_end = cur_start + count
cur_indices = indices[cur_start:cur_end]
grouping[label] = cur_indices
cur_start = cur_end
return grouping
class EvaluatorScore(nn.Module):
@abstractmethod
def forward(self, pred_batch, target_batch, mask):
pass
@abstractmethod
def get_value(self, groups=None, states=None):
pass
@abstractmethod
def reset(self):
pass
class PairwiseScore(EvaluatorScore, ABC):
def __init__(self):
super().__init__()
self.individual_values = None
def get_value(self, groups=None, states=None):
"""
:param groups:
:return:
total_results: dict of kind {'mean': score mean, 'std': score std}
group_results: None, if groups is None;
else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
"""
individual_values = torch.stack(states, dim=0).reshape(-1).cpu().numpy() if states is not None \
else self.individual_values
total_results = {
'mean': individual_values.mean(),
'std': individual_values.std()
}
if groups is None:
return total_results, None
group_results = dict()
grouping = get_groupings(groups)
for label, index in grouping.items():
group_scores = individual_values[index]
group_results[label] = {
'mean': group_scores.mean(),
'std': group_scores.std()
}
return total_results, group_results
def reset(self):
self.individual_values = []
class SSIMScore(PairwiseScore):
def __init__(self, window_size=11):
super().__init__()
self.score = SSIM(window_size=window_size, size_average=False).eval()
self.reset()
def forward(self, pred_batch, target_batch, mask=None):
batch_values = self.score(pred_batch, target_batch)
self.individual_values = np.hstack([
self.individual_values, batch_values.detach().cpu().numpy()
])
return batch_values
class LPIPSScore(PairwiseScore):
def __init__(self, model='net-lin', net='vgg', model_path=None, use_gpu=True):
super().__init__()
self.score = PerceptualLoss(model=model, net=net, model_path=model_path,
use_gpu=use_gpu, spatial=False).eval()
self.reset()
def forward(self, pred_batch, target_batch, mask=None):
batch_values = self.score(pred_batch, target_batch).flatten()
self.individual_values = np.hstack([
self.individual_values, batch_values.detach().cpu().numpy()
])
return batch_values
def fid_calculate_activation_statistics(act):
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def calculate_frechet_distance(activations_pred, activations_target, eps=1e-6):
mu1, sigma1 = fid_calculate_activation_statistics(activations_pred)
mu2, sigma2 = fid_calculate_activation_statistics(activations_target)
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
LOGGER.warning(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
# if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-2):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
class FIDScore(EvaluatorScore):
def __init__(self, dims=2048, eps=1e-6):
LOGGER.info("FIDscore init called")
super().__init__()
if getattr(FIDScore, '_MODEL', None) is None:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
FIDScore._MODEL = InceptionV3([block_idx]).eval()
self.model = FIDScore._MODEL
self.eps = eps
self.reset()
LOGGER.info("FIDscore init done")
def forward(self, pred_batch, target_batch, mask=None):
activations_pred = self._get_activations(pred_batch)
activations_target = self._get_activations(target_batch)
self.activations_pred.append(activations_pred.detach().cpu())
self.activations_target.append(activations_target.detach().cpu())
return activations_pred, activations_target
def get_value(self, groups=None, states=None):
LOGGER.info("FIDscore get_value called")
activations_pred, activations_target = zip(*states) if states is not None \
else (self.activations_pred, self.activations_target)
activations_pred = torch.cat(activations_pred).cpu().numpy()
activations_target = torch.cat(activations_target).cpu().numpy()
total_distance = calculate_frechet_distance(activations_pred, activations_target, eps=self.eps)
total_results = dict(mean=total_distance)
if groups is None:
group_results = None
else:
group_results = dict()
grouping = get_groupings(groups)
for label, index in grouping.items():
if len(index) > 1:
group_distance = calculate_frechet_distance(activations_pred[index], activations_target[index],
eps=self.eps)
group_results[label] = dict(mean=group_distance)
else:
group_results[label] = dict(mean=float('nan'))
self.reset()
LOGGER.info("FIDscore get_value done")
return total_results, group_results
def reset(self):
self.activations_pred = []
self.activations_target = []
def _get_activations(self, batch):
activations = self.model(batch)[0]
if activations.shape[2] != 1 or activations.shape[3] != 1:
assert False, \
'We should not have got here, because Inception always scales inputs to 299x299'
# activations = F.adaptive_avg_pool2d(activations, output_size=(1, 1))
activations = activations.squeeze(-1).squeeze(-1)
return activations
class SegmentationAwareScore(EvaluatorScore):
def __init__(self, weights_path):
super().__init__()
self.segm_network = SegmentationModule(weights_path=weights_path, use_default_normalization=True).eval()
self.target_class_freq_by_image_total = []
self.target_class_freq_by_image_mask = []
self.pred_class_freq_by_image_mask = []
def forward(self, pred_batch, target_batch, mask):
pred_segm_flat = self.segm_network.predict(pred_batch)[0].view(pred_batch.shape[0], -1).long().detach().cpu().numpy()
target_segm_flat = self.segm_network.predict(target_batch)[0].view(pred_batch.shape[0], -1).long().detach().cpu().numpy()
mask_flat = (mask.view(mask.shape[0], -1) > 0.5).detach().cpu().numpy()
batch_target_class_freq_total = []
batch_target_class_freq_mask = []
batch_pred_class_freq_mask = []
for cur_pred_segm, cur_target_segm, cur_mask in zip(pred_segm_flat, target_segm_flat, mask_flat):
cur_target_class_freq_total = np.bincount(cur_target_segm, minlength=NUM_CLASS)[None, ...]
cur_target_class_freq_mask = np.bincount(cur_target_segm[cur_mask], minlength=NUM_CLASS)[None, ...]
cur_pred_class_freq_mask = np.bincount(cur_pred_segm[cur_mask], minlength=NUM_CLASS)[None, ...]
self.target_class_freq_by_image_total.append(cur_target_class_freq_total)
self.target_class_freq_by_image_mask.append(cur_target_class_freq_mask)
self.pred_class_freq_by_image_mask.append(cur_pred_class_freq_mask)
batch_target_class_freq_total.append(cur_target_class_freq_total)
batch_target_class_freq_mask.append(cur_target_class_freq_mask)
batch_pred_class_freq_mask.append(cur_pred_class_freq_mask)
batch_target_class_freq_total = np.concatenate(batch_target_class_freq_total, axis=0)
batch_target_class_freq_mask = np.concatenate(batch_target_class_freq_mask, axis=0)
batch_pred_class_freq_mask = np.concatenate(batch_pred_class_freq_mask, axis=0)
return batch_target_class_freq_total, batch_target_class_freq_mask, batch_pred_class_freq_mask
def reset(self):
super().reset()
self.target_class_freq_by_image_total = []
self.target_class_freq_by_image_mask = []
self.pred_class_freq_by_image_mask = []
def distribute_values_to_classes(target_class_freq_by_image_mask, values, idx2name):
assert target_class_freq_by_image_mask.ndim == 2 and target_class_freq_by_image_mask.shape[0] == values.shape[0]
total_class_freq = target_class_freq_by_image_mask.sum(0)
distr_values = (target_class_freq_by_image_mask * values[..., None]).sum(0)
result = distr_values / (total_class_freq + 1e-3)
return {idx2name[i]: val for i, val in enumerate(result) if total_class_freq[i] > 0}
def get_segmentation_idx2name():
return {i - 1: name for i, name in segm_options['classes'].set_index('Idx', drop=True)['Name'].to_dict().items()}
class SegmentationAwarePairwiseScore(SegmentationAwareScore):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.individual_values = []
self.segm_idx2name = get_segmentation_idx2name()
def forward(self, pred_batch, target_batch, mask):
cur_class_stats = super().forward(pred_batch, target_batch, mask)
score_values = self.calc_score(pred_batch, target_batch, mask)
self.individual_values.append(score_values)
return cur_class_stats + (score_values,)
@abstractmethod
def calc_score(self, pred_batch, target_batch, mask):
raise NotImplementedError()
def get_value(self, groups=None, states=None):
"""
:param groups:
:return:
total_results: dict of kind {'mean': score mean, 'std': score std}
group_results: None, if groups is None;
else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
"""
if states is not None:
(target_class_freq_by_image_total,
target_class_freq_by_image_mask,
pred_class_freq_by_image_mask,
individual_values) = states
else:
target_class_freq_by_image_total = self.target_class_freq_by_image_total
target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask
individual_values = self.individual_values
target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)
individual_values = np.concatenate(individual_values, axis=0)
total_results = {
'mean': individual_values.mean(),
'std': individual_values.std(),
**distribute_values_to_classes(target_class_freq_by_image_mask, individual_values, self.segm_idx2name)
}
if groups is None:
return total_results, None
group_results = dict()
grouping = get_groupings(groups)
for label, index in grouping.items():
group_class_freq = target_class_freq_by_image_mask[index]
group_scores = individual_values[index]
group_results[label] = {
'mean': group_scores.mean(),
'std': group_scores.std(),
** distribute_values_to_classes(group_class_freq, group_scores, self.segm_idx2name)
}
return total_results, group_results
def reset(self):
super().reset()
self.individual_values = []
class SegmentationClassStats(SegmentationAwarePairwiseScore):
def calc_score(self, pred_batch, target_batch, mask):
return 0
def get_value(self, groups=None, states=None):
"""
:param groups:
:return:
total_results: dict of kind {'mean': score mean, 'std': score std}
group_results: None, if groups is None;
else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
"""
if states is not None:
(target_class_freq_by_image_total,
target_class_freq_by_image_mask,
pred_class_freq_by_image_mask,
_) = states
else:
target_class_freq_by_image_total = self.target_class_freq_by_image_total
target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask
target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)
target_class_freq_by_image_total_marginal = target_class_freq_by_image_total.sum(0).astype('float32')
target_class_freq_by_image_total_marginal /= target_class_freq_by_image_total_marginal.sum()
target_class_freq_by_image_mask_marginal = target_class_freq_by_image_mask.sum(0).astype('float32')
target_class_freq_by_image_mask_marginal /= target_class_freq_by_image_mask_marginal.sum()
pred_class_freq_diff = (pred_class_freq_by_image_mask - target_class_freq_by_image_mask).sum(0) / (target_class_freq_by_image_mask.sum(0) + 1e-3)
total_results = dict()
total_results.update({f'total_freq/{self.segm_idx2name[i]}': v
for i, v in enumerate(target_class_freq_by_image_total_marginal)
if v > 0})
total_results.update({f'mask_freq/{self.segm_idx2name[i]}': v
for i, v in enumerate(target_class_freq_by_image_mask_marginal)
if v > 0})
total_results.update({f'mask_freq_diff/{self.segm_idx2name[i]}': v
for i, v in enumerate(pred_class_freq_diff)
if target_class_freq_by_image_total_marginal[i] > 0})
if groups is None:
return total_results, None
group_results = dict()
grouping = get_groupings(groups)
for label, index in grouping.items():
group_target_class_freq_by_image_total = target_class_freq_by_image_total[index]
group_target_class_freq_by_image_mask = target_class_freq_by_image_mask[index]
group_pred_class_freq_by_image_mask = pred_class_freq_by_image_mask[index]
group_target_class_freq_by_image_total_marginal = group_target_class_freq_by_image_total.sum(0).astype('float32')
group_target_class_freq_by_image_total_marginal /= group_target_class_freq_by_image_total_marginal.sum()
group_target_class_freq_by_image_mask_marginal = group_target_class_freq_by_image_mask.sum(0).astype('float32')
group_target_class_freq_by_image_mask_marginal /= group_target_class_freq_by_image_mask_marginal.sum()
group_pred_class_freq_diff = (group_pred_class_freq_by_image_mask - group_target_class_freq_by_image_mask).sum(0) / (
group_target_class_freq_by_image_mask.sum(0) + 1e-3)
cur_group_results = dict()
cur_group_results.update({f'total_freq/{self.segm_idx2name[i]}': v
for i, v in enumerate(group_target_class_freq_by_image_total_marginal)
if v > 0})
cur_group_results.update({f'mask_freq/{self.segm_idx2name[i]}': v
for i, v in enumerate(group_target_class_freq_by_image_mask_marginal)
if v > 0})
cur_group_results.update({f'mask_freq_diff/{self.segm_idx2name[i]}': v
for i, v in enumerate(group_pred_class_freq_diff)
if group_target_class_freq_by_image_total_marginal[i] > 0})
group_results[label] = cur_group_results
return total_results, group_results
class SegmentationAwareSSIM(SegmentationAwarePairwiseScore):
def __init__(self, *args, window_size=11, **kwargs):
super().__init__(*args, **kwargs)
self.score_impl = SSIM(window_size=window_size, size_average=False).eval()
def calc_score(self, pred_batch, target_batch, mask):
return self.score_impl(pred_batch, target_batch).detach().cpu().numpy()
class SegmentationAwareLPIPS(SegmentationAwarePairwiseScore):
def __init__(self, *args, model='net-lin', net='vgg', model_path=None, use_gpu=True, **kwargs):
super().__init__(*args, **kwargs)
self.score_impl = PerceptualLoss(model=model, net=net, model_path=model_path,
use_gpu=use_gpu, spatial=False).eval()
def calc_score(self, pred_batch, target_batch, mask):
return self.score_impl(pred_batch, target_batch).flatten().detach().cpu().numpy()
def calculade_fid_no_img(img_i, activations_pred, activations_target, eps=1e-6):
activations_pred = activations_pred.copy()
activations_pred[img_i] = activations_target[img_i]
return calculate_frechet_distance(activations_pred, activations_target, eps=eps)
class SegmentationAwareFID(SegmentationAwarePairwiseScore):
def __init__(self, *args, dims=2048, eps=1e-6, n_jobs=-1, **kwargs):
super().__init__(*args, **kwargs)
if getattr(FIDScore, '_MODEL', None) is None:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
FIDScore._MODEL = InceptionV3([block_idx]).eval()
self.model = FIDScore._MODEL
self.eps = eps
self.n_jobs = n_jobs
def calc_score(self, pred_batch, target_batch, mask):
activations_pred = self._get_activations(pred_batch)
activations_target = self._get_activations(target_batch)
return activations_pred, activations_target
def get_value(self, groups=None, states=None):
"""
:param groups:
:return:
total_results: dict of kind {'mean': score mean, 'std': score std}
group_results: None, if groups is None;
else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
"""
if states is not None:
(target_class_freq_by_image_total,
target_class_freq_by_image_mask,
pred_class_freq_by_image_mask,
activation_pairs) = states
else:
target_class_freq_by_image_total = self.target_class_freq_by_image_total
target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask
activation_pairs = self.individual_values
target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)
activations_pred, activations_target = zip(*activation_pairs)
activations_pred = np.concatenate(activations_pred, axis=0)
activations_target = np.concatenate(activations_target, axis=0)
total_results = {
'mean': calculate_frechet_distance(activations_pred, activations_target, eps=self.eps),
'std': 0,
**self.distribute_fid_to_classes(target_class_freq_by_image_mask, activations_pred, activations_target)
}
if groups is None:
return total_results, None
group_results = dict()
grouping = get_groupings(groups)
for label, index in grouping.items():
if len(index) > 1:
group_activations_pred = activations_pred[index]
group_activations_target = activations_target[index]
group_class_freq = target_class_freq_by_image_mask[index]
group_results[label] = {
'mean': calculate_frechet_distance(group_activations_pred, group_activations_target, eps=self.eps),
'std': 0,
**self.distribute_fid_to_classes(group_class_freq,
group_activations_pred,
group_activations_target)
}
else:
group_results[label] = dict(mean=float('nan'), std=0)
return total_results, group_results
def distribute_fid_to_classes(self, class_freq, activations_pred, activations_target):
real_fid = calculate_frechet_distance(activations_pred, activations_target, eps=self.eps)
fid_no_images = Parallel(n_jobs=self.n_jobs)(
delayed(calculade_fid_no_img)(img_i, activations_pred, activations_target, eps=self.eps)
for img_i in range(activations_pred.shape[0])
)
errors = real_fid - fid_no_images
return distribute_values_to_classes(class_freq, errors, self.segm_idx2name)
def _get_activations(self, batch):
activations = self.model(batch)[0]
if activations.shape[2] != 1 or activations.shape[3] != 1:
activations = F.adaptive_avg_pool2d(activations, output_size=(1, 1))
activations = activations.squeeze(-1).squeeze(-1).detach().cpu().numpy()
return activations
|