File size: 5,242 Bytes
86248f3 19b3da3 86248f3 19b3da3 86248f3 19b3da3 86248f3 19b3da3 86248f3 19b3da3 86248f3 19b3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from internals.data.result import Result
from internals.pipelines.twoStepPipeline import two_step_pipeline
from internals.util.commons import disable_safety_checker, download_image
from internals.util.config import num_return_sequences
class AbstractPipeline:
def load(self, model_dir: str):
pass
def create(self, pipe):
pass
class Text2Img(AbstractPipeline):
@dataclass
class Params:
prompt: List[str] = None
modified_prompt: List[str] = None
prompt_left: List[str] = None
prompt_right: List[str] = None
def load(self, model_dir: str):
self.pipe = two_step_pipeline.from_pretrained(
model_dir, torch_dtype=torch.float16
).to("cuda")
self.__patch()
def create(self, pipeline: AbstractPipeline):
self.pipe = two_step_pipeline(**pipeline.pipe.components).to("cuda")
self.__patch()
def __patch(self):
self.pipe.enable_xformers_memory_efficient_attention()
@torch.inference_mode()
def process(
self,
params: Params,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[str] = None,
num_images_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
iteration: float = 3.0,
):
prompt = params.prompt
if params.prompt_left and params.prompt_right:
# multi-character pipelines
prompt = [params.prompt[0], params.prompt_left[0], params.prompt_right[0]]
result = self.pipe.multi_character_diffusion(
prompt=prompt,
pos=["1:1-0:0", "1:2-0:0", "1:2-0:1"],
mix_val=[0.2, 0.8, 0.8],
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=[negative_prompt or ""] * len(prompt),
num_images_per_prompt=num_return_sequences,
eta=eta,
# generator=generator,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
else:
# two step pipeline
modified_prompt = params.modified_prompt
result = self.pipe.two_step_pipeline(
prompt=prompt,
modified_prompts=modified_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=[negative_prompt or ""] * num_return_sequences,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
cross_attention_kwargs=cross_attention_kwargs,
iteration=iteration,
)
return Result.from_result(result)
class Img2Img(AbstractPipeline):
def load(self, model_dir: str):
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_dir, torch_dtype=torch.float16
).to("cuda")
self.__patch()
def create(self, pipeline: AbstractPipeline):
self.pipe = StableDiffusionImg2ImgPipeline(**pipeline.pipe.components).to(
"cuda"
)
self.__patch()
def __patch(self):
self.pipe.enable_xformers_memory_efficient_attention()
@torch.inference_mode()
def process(
self,
prompt: List[str],
imageUrl: str,
negative_prompt: List[str],
strength: float,
guidance_scale: float,
steps: int,
width: int,
height: int,
):
image = download_image(imageUrl).resize((width, height))
result = self.pipe.__call__(
prompt=prompt,
image=image,
strength=strength,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
num_inference_steps=steps,
)
return Result.from_result(result)
|