File size: 11,342 Bytes
ea5c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# extract approximating LoRA by svd from two SD models
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo!
import argparse
import json
import os
import time
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library import sai_model_spec, model_util, sdxl_model_util
import lora
# CLAMP_QUANTILE = 0.99
# MIN_DIFF = 1e-1
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(model, file_name)
else:
torch.save(model, file_name)
def svd(
model_org=None,
model_tuned=None,
save_to=None,
dim=4,
v2=None,
sdxl=None,
conv_dim=None,
v_parameterization=None,
device=None,
save_precision=None,
clamp_quantile=0.99,
min_diff=0.01,
no_metadata=False,
):
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
assert v2 != sdxl or (not v2 and not sdxl), "v2 and sdxl cannot be specified at the same time / v2とsdxlは同時に指定できません"
if v_parameterization is None:
v_parameterization = v2
save_dtype = str_to_dtype(save_precision)
# load models
if not sdxl:
print(f"loading original SD model : {model_org}")
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_org)
text_encoders_o = [text_encoder_o]
print(f"loading tuned SD model : {model_tuned}")
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_tuned)
text_encoders_t = [text_encoder_t]
model_version = model_util.get_model_version_str_for_sd1_sd2(v2, v_parameterization)
else:
print(f"loading original SDXL model : {model_org}")
text_encoder_o1, text_encoder_o2, _, unet_o, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_org, "cpu"
)
text_encoders_o = [text_encoder_o1, text_encoder_o2]
print(f"loading original SDXL model : {model_tuned}")
text_encoder_t1, text_encoder_t2, _, unet_t, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_tuned, "cpu"
)
text_encoders_t = [text_encoder_t1, text_encoder_t2]
model_version = sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0
# create LoRA network to extract weights: Use dim (rank) as alpha
if conv_dim is None:
kwargs = {}
else:
kwargs = {"conv_dim": conv_dim, "conv_alpha": conv_dim}
lora_network_o = lora.create_network(1.0, dim, dim, None, text_encoders_o, unet_o, **kwargs)
lora_network_t = lora.create_network(1.0, dim, dim, None, text_encoders_t, unet_t, **kwargs)
assert len(lora_network_o.text_encoder_loras) == len(
lora_network_t.text_encoder_loras
), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) "
# get diffs
diffs = {}
text_encoder_different = False
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
# Text Encoder might be same
if not text_encoder_different and torch.max(torch.abs(diff)) > min_diff:
text_encoder_different = True
print(f"Text encoder is different. {torch.max(torch.abs(diff))} > {min_diff}")
diff = diff.float()
diffs[lora_name] = diff
if not text_encoder_different:
print("Text encoder is same. Extract U-Net only.")
lora_network_o.text_encoder_loras = []
diffs = {}
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
diff = diff.float()
if args.device:
diff = diff.to(args.device)
diffs[lora_name] = diff
# make LoRA with svd
print("calculating by svd")
lora_weights = {}
with torch.no_grad():
for lora_name, mat in tqdm(list(diffs.items())):
# if conv_dim is None, diffs do not include LoRAs for conv2d-3x3
conv2d = len(mat.size()) == 4
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
rank = dim if not conv2d_3x3 or conv_dim is None else conv_dim
out_dim, in_dim = mat.size()[0:2]
if device:
mat = mat.to(device)
# print(lora_name, mat.size(), mat.device, rank, in_dim, out_dim)
rank = min(rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
if conv2d:
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, clamp_quantile)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, rank, 1, 1)
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
U = U.to("cpu").contiguous()
Vh = Vh.to("cpu").contiguous()
lora_weights[lora_name] = (U, Vh)
# make state dict for LoRA
lora_sd = {}
for lora_name, (up_weight, down_weight) in lora_weights.items():
lora_sd[lora_name + ".lora_up.weight"] = up_weight
lora_sd[lora_name + ".lora_down.weight"] = down_weight
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0])
# load state dict to LoRA and save it
lora_network_save, lora_sd = lora.create_network_from_weights(1.0, None, None, text_encoders_o, unet_o, weights_sd=lora_sd)
lora_network_save.apply_to(text_encoders_o, unet_o) # create internal module references for state_dict
info = lora_network_save.load_state_dict(lora_sd)
print(f"Loading extracted LoRA weights: {info}")
dir_name = os.path.dirname(save_to)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# minimum metadata
net_kwargs = {}
if conv_dim is not None:
net_kwargs["conv_dim"] = str(conv_dim)
net_kwargs["conv_alpha"] = str(float(conv_dim))
metadata = {
"ss_v2": str(v2),
"ss_base_model_version": model_version,
"ss_network_module": "networks.lora",
"ss_network_dim": str(dim),
"ss_network_alpha": str(float(dim)),
"ss_network_args": json.dumps(net_kwargs),
}
if not no_metadata:
title = os.path.splitext(os.path.basename(save_to))[0]
sai_metadata = sai_model_spec.build_metadata(None, v2, v_parameterization, sdxl, True, False, time.time(), title=title)
metadata.update(sai_metadata)
lora_network_save.save_weights(save_to, save_dtype, metadata)
print(f"LoRA weights are saved to: {save_to}")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む")
parser.add_argument(
"--v_parameterization",
action="store_true",
default=None,
help="make LoRA metadata for v-parameterization (default is same to v2) / 作成するLoRAのメタデータにv-parameterization用と設定する(省略時はv2と同じ)",
)
parser.add_argument(
"--sdxl", action="store_true", help="load Stable Diffusion SDXL base model / Stable Diffusion SDXL baseのモデルを読み込む"
)
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat",
)
parser.add_argument(
"--model_org",
type=str,
default=None,
required=True,
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors",
)
parser.add_argument(
"--model_tuned",
type=str,
default=None,
required=True,
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
required=True,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
)
parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)")
parser.add_argument(
"--conv_dim",
type=int,
default=None,
help="dimension (rank) of LoRA for Conv2d-3x3 (default None, disabled) / LoRAのConv2d-3x3の次元数(rank)(デフォルトNone、適用なし)",
)
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
parser.add_argument(
"--clamp_quantile",
type=float,
default=0.99,
help="Quantile clamping value, float, (0-1). Default = 0.99 / 値をクランプするための分位点、float、(0-1)。デフォルトは0.99",
)
parser.add_argument(
"--min_diff",
type=float,
default=0.01,
help="Minimum difference between finetuned model and base to consider them different enough to extract, float, (0-1). Default = 0.01 /"
+ "LoRAを抽出するために元モデルと派生モデルの差分の最小値、float、(0-1)。デフォルトは0.01",
)
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
svd(**vars(args))
|