File size: 20,029 Bytes
830fe50
19b3da3
 
 
 
830fe50
 
 
 
 
 
10230ea
 
 
ea5c647
830fe50
 
10230ea
830fe50
10230ea
830fe50
4ff5093
10230ea
830fe50
19b3da3
4ff5093
86248f3
19b3da3
42ef134
19b3da3
42ef134
 
19b3da3
 
 
 
10230ea
 
 
 
4ff5093
10230ea
 
 
19b3da3
 
830fe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19b3da3
 
b71808f
830fe50
b71808f
10230ea
830fe50
19b3da3
22df957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10230ea
830fe50
 
10230ea
 
19b3da3
10230ea
 
 
 
f70725b
10230ea
 
830fe50
 
 
 
 
 
4ff5093
830fe50
b71808f
830fe50
 
 
 
 
b71808f
19b3da3
 
830fe50
 
b71808f
830fe50
 
 
 
 
 
b71808f
830fe50
 
 
 
 
 
10230ea
830fe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea5c647
 
 
 
10230ea
830fe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10230ea
 
830fe50
 
 
 
 
 
10230ea
830fe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b71808f
7fbdac4
 
 
 
 
830fe50
19b3da3
10230ea
 
 
 
 
86248f3
10230ea
86248f3
10230ea
 
 
 
19b3da3
 
 
 
 
 
 
f70725b
19b3da3
 
 
f70725b
 
19b3da3
 
 
 
 
 
 
5c695cd
19b3da3
f70725b
 
 
 
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
 
 
 
 
f70725b
19b3da3
 
 
f70725b
 
19b3da3
 
 
 
 
 
f70725b
 
4ff5093
f70725b
 
 
 
 
 
 
 
4ff5093
f70725b
19b3da3
 
 
 
 
 
 
 
f70725b
19b3da3
 
 
 
f70725b
 
19b3da3
 
 
 
 
 
 
 
 
 
 
f70725b
 
 
830fe50
f70725b
 
 
 
 
 
 
 
19b3da3
 
86248f3
 
 
830fe50
86248f3
 
f70725b
86248f3
 
 
 
f70725b
86248f3
 
 
 
 
 
830fe50
 
 
ea5c647
830fe50
 
 
 
 
86248f3
f70725b
830fe50
f70725b
 
 
 
 
 
830fe50
f70725b
 
 
86248f3
 
 
 
 
 
 
 
f70725b
86248f3
 
 
 
f70725b
86248f3
 
 
 
 
 
 
a3d6c18
86248f3
830fe50
 
 
 
ea5c647
 
830fe50
 
 
 
 
f70725b
830fe50
f70725b
 
 
 
 
 
830fe50
f70725b
 
 
86248f3
 
10230ea
830fe50
 
 
10230ea
19b3da3
 
 
f256b62
19b3da3
 
830fe50
 
86248f3
 
 
 
a3d6c18
ea5c647
86248f3
ea5c647
 
 
 
86248f3
 
42ef134
 
830fe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ef134
5c695cd
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc457e
19b3da3
 
 
 
 
 
10230ea
 
4ff5093
10230ea
 
 
 
 
830fe50
 
 
 
 
 
 
 
10230ea
 
 
830fe50
 
 
 
 
 
 
 
 
10230ea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
from typing import AbstractSet, List, Literal, Optional, Union

import cv2
import numpy as np
import torch
from controlnet_aux import (
    HEDdetector,
    LineartDetector,
    OpenposeDetector,
    PidiNetDetector,
)
from diffusers import (
    ControlNetModel,
    DiffusionPipeline,
    EulerAncestralDiscreteScheduler,
    StableDiffusionAdapterPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    StableDiffusionControlNetPipeline,
    StableDiffusionXLAdapterPipeline,
    StableDiffusionXLControlNetPipeline,
    T2IAdapter,
    UniPCMultistepScheduler,
)
from diffusers.pipelines.controlnet import MultiControlNetModel
from PIL import Image
from pydash import has
from torch.nn import Linear
from tqdm import gui
from transformers import pipeline

import internals.util.image as ImageUtil
from external.midas import apply_midas
from internals.data.result import Result
from internals.pipelines.commons import AbstractPipeline
from internals.util.cache import clear_cuda_and_gc
from internals.util.commons import download_image
from internals.util.config import (
    get_hf_cache_dir,
    get_hf_token,
    get_is_sdxl,
    get_model_dir,
)

CONTROLNET_TYPES = Literal["pose", "canny", "scribble", "linearart", "tile_upscaler"]


class StableDiffusionNetworkModelPipelineLoader:
    """Loads the pipeline for network module, eg: controlnet or t2i.
    Does not throw error in case of unsupported configurations, instead it returns None.
    """

    def __new__(
        cls,
        is_sdxl,
        is_img2img,
        network_model,
        pipeline_type,
        base_pipe: Optional[AbstractSet] = None,
    ):
        if is_sdxl and is_img2img:
            # Does not matter pipeline type but tile upscale is not supported
            print("Warning: Tile upscale is not supported on SDXL")
            return None

        if base_pipe is None:
            pretrained = True
            kwargs = {
                "pretrained_model_name_or_path": get_model_dir(),
                "torch_dtype": torch.float16,
                "use_auth_token": get_hf_token(),
                "cache_dir": get_hf_cache_dir(),
            }
        else:
            pretrained = False
            kwargs = {
                **base_pipe.pipe.components,  # pyright: ignore
            }

        if is_sdxl and pipeline_type == "controlnet":
            model = (
                StableDiffusionXLControlNetPipeline.from_pretrained
                if pretrained
                else StableDiffusionXLControlNetPipeline
            )
            return model(controlnet=network_model, **kwargs).to("cuda")
        if is_sdxl and pipeline_type == "t2i":
            model = (
                StableDiffusionXLAdapterPipeline.from_pretrained
                if pretrained
                else StableDiffusionXLAdapterPipeline
            )
            return model(adapter=network_model, **kwargs).to("cuda")
        if is_img2img and pipeline_type == "controlnet":
            model = (
                StableDiffusionControlNetImg2ImgPipeline.from_pretrained
                if pretrained
                else StableDiffusionControlNetImg2ImgPipeline
            )
            return model(controlnet=network_model, **kwargs).to("cuda")
        if pipeline_type == "controlnet":
            model = (
                StableDiffusionControlNetPipeline.from_pretrained
                if pretrained
                else StableDiffusionControlNetPipeline
            )
            return model(controlnet=network_model, **kwargs).to("cuda")
        if pipeline_type == "t2i":
            model = (
                StableDiffusionAdapterPipeline.from_pretrained
                if pretrained
                else StableDiffusionAdapterPipeline
            )
            return model(adapter=network_model, **kwargs).to("cuda")

        print(
            f"Warning: Unsupported configuration {is_sdxl=}, {is_img2img=}, {pipeline_type=}"
        )
        return None


class ControlNet(AbstractPipeline):
    __current_task_name = ""
    __loaded = False
    __pipe_type = None

    def init(self, pipeline: AbstractPipeline):
        setattr(self, "__pipeline", pipeline)

    def unload(self):
        "Unloads the network module, pipelines and clears the cache."

        if not self.__loaded:
            return

        self.__loaded = False
        self.__pipe_type = None
        self.__current_task_name = ""

        if hasattr(self, "pipe"):
            delattr(self, "pipe")
        if hasattr(self, "pipe2"):
            delattr(self, "pipe2")

        clear_cuda_and_gc()

    def load_model(self, task_name: CONTROLNET_TYPES):
        "Appropriately loads the network module, pipelines and cache it for reuse."

        config = self.__model_sdxl if get_is_sdxl() else self.__model_normal
        if self.__current_task_name == task_name:
            return
        model = config[task_name]
        if not model:
            raise Exception(f"ControlNet is not supported for {task_name}")
        while model in list(config.keys()):
            task_name = model  # pyright: ignore
            model = config[task_name]

        pipeline_type = (
            self.__model_sdxl_types[task_name]
            if get_is_sdxl()
            else self.__model_normal_types[task_name]
        )

        if "," in model:
            model = [m.strip() for m in model.split(",")]

        model = self.__load_network_model(model, pipeline_type)

        self.__load_pipeline(model, pipeline_type)

        self.__current_task_name = task_name

        clear_cuda_and_gc()

    def __load_network_model(self, model_name, pipeline_type):
        "Loads the network module, eg: ControlNet or T2I Adapters"

        def load_controlnet(model):
            return ControlNetModel.from_pretrained(
                model,
                torch_dtype=torch.float16,
                cache_dir=get_hf_cache_dir(),
            ).to("cuda")

        def load_t2i(model):
            return T2IAdapter.from_pretrained(
                model,
                torch_dtype=torch.float16,
                varient="fp16",
            ).to("cuda")

        if type(model_name) == str:
            if pipeline_type == "controlnet":
                return load_controlnet(model_name)
            if pipeline_type == "t2i":
                return load_t2i(model_name)
            raise Exception("Invalid pipeline type")
        elif type(model_name) == list:
            if pipeline_type == "controlnet":
                cns = []
                for model in model_name:
                    cns.append(load_controlnet(model))
                return MultiControlNetModel(cns).to("cuda")
            elif pipeline_type == "t2i":
                raise Exception("Multi T2I adapters are not supported")
            raise Exception("Invalid pipeline type")

    def __load_pipeline(self, network_model, pipeline_type):
        "Load the base pipeline(s) (if not loaded already) based on pipeline type and attaches the network module to the pipeline"

        def patch_pipe(pipe):
            if not pipe:
                # cases where the loader may return None
                return None

            if get_is_sdxl():
                pipe.enable_vae_tiling()
                pipe.enable_vae_slicing()
                pipe.enable_xformers_memory_efficient_attention()
                # this scheduler produces good outputs for t2i adapters
                pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
                    pipe.scheduler.config
                )
            else:
                pipe.enable_xformers_memory_efficient_attention()
            return pipe

        # If the pipeline type is changed we should reload all
        # the pipelines
        if not self.__loaded or self.__pipe_type != pipeline_type:
            # controlnet pipeline for tile upscaler
            pipe = StableDiffusionNetworkModelPipelineLoader(
                is_sdxl=get_is_sdxl(),
                is_img2img=True,
                network_model=network_model,
                pipeline_type=pipeline_type,
                base_pipe=getattr(self, "__pipeline", None),
            )
            pipe = patch_pipe(pipe)
            if pipe:
                self.pipe = pipe

            # controlnet pipeline for canny and pose
            pipe2 = StableDiffusionNetworkModelPipelineLoader(
                is_sdxl=get_is_sdxl(),
                is_img2img=False,
                network_model=network_model,
                pipeline_type=pipeline_type,
                base_pipe=getattr(self, "__pipeline", None),
            )
            pipe2 = patch_pipe(pipe2)
            if pipe2:
                self.pipe2 = pipe2

            self.__loaded = True
            self.__pipe_type = pipeline_type

        # Set the network module in the pipeline
        if pipeline_type == "controlnet":
            if hasattr(self, "pipe"):
                setattr(self.pipe, "controlnet", network_model)
            if hasattr(self, "pipe2"):
                setattr(self.pipe2, "controlnet", network_model)
        elif pipeline_type == "t2i":
            if hasattr(self, "pipe"):
                setattr(self.pipe, "adapter", network_model)
            if hasattr(self, "pipe2"):
                setattr(self.pipe2, "adapter", network_model)

        if hasattr(self, "pipe"):
            self.pipe = self.pipe.to("cuda")
        if hasattr(self, "pipe2"):
            self.pipe2 = self.pipe2.to("cuda")

        clear_cuda_and_gc()

    def process(self, **kwargs):
        if self.__current_task_name == "pose":
            return self.process_pose(**kwargs)
        if self.__current_task_name == "canny":
            return self.process_canny(**kwargs)
        if self.__current_task_name == "scribble":
            return self.process_scribble(**kwargs)
        if self.__current_task_name == "linearart":
            return self.process_linearart(**kwargs)
        if self.__current_task_name == "tile_upscaler":
            return self.process_tile_upscaler(**kwargs)
        raise Exception("ControlNet is not loaded with any model")

    @torch.inference_mode()
    def process_canny(
        self,
        prompt: List[str],
        imageUrl: str,
        seed: int,
        num_inference_steps: int,
        negative_prompt: List[str],
        height: int,
        width: int,
        guidance_scale: float = 9,
        **kwargs,
    ):
        if self.__current_task_name != "canny":
            raise Exception("ControlNet is not loaded with canny model")

        torch.manual_seed(seed)

        init_image = download_image(imageUrl).resize((width, height))
        init_image = ControlNet.canny_detect_edge(init_image)

        kwargs = {
            "prompt": prompt,
            "image": init_image,
            "guidance_scale": guidance_scale,
            "num_images_per_prompt": 1,
            "negative_prompt": negative_prompt,
            "num_inference_steps": num_inference_steps,
            "height": height,
            "width": width,
            **kwargs,
        }

        result = self.pipe2.__call__(**kwargs)
        return Result.from_result(result)

    @torch.inference_mode()
    def process_pose(
        self,
        prompt: List[str],
        image: List[Image.Image],
        seed: int,
        num_inference_steps: int,
        negative_prompt: List[str],
        height: int,
        width: int,
        guidance_scale: float = 7.5,
        **kwargs,
    ):
        if self.__current_task_name != "pose":
            raise Exception("ControlNet is not loaded with pose model")

        torch.manual_seed(seed)

        kwargs = {
            "prompt": prompt[0],
            "image": image,
            "num_images_per_prompt": 4,
            "num_inference_steps": num_inference_steps,
            "negative_prompt": negative_prompt[0],
            "guidance_scale": guidance_scale,
            "height": height,
            "width": width,
            **kwargs,
        }
        print(kwargs)
        result = self.pipe2.__call__(**kwargs)
        return Result.from_result(result)

    @torch.inference_mode()
    def process_tile_upscaler(
        self,
        imageUrl: str,
        prompt: str,
        negative_prompt: str,
        num_inference_steps: int,
        seed: int,
        height: int,
        width: int,
        resize_dimension: int,
        guidance_scale: float = 7.5,
        **kwargs,
    ):
        if self.__current_task_name != "tile_upscaler":
            raise Exception("ControlNet is not loaded with tile_upscaler model")

        torch.manual_seed(seed)

        init_image = download_image(imageUrl).resize((width, height))
        condition_image = self.__resize_for_condition_image(
            init_image, resize_dimension
        )

        kwargs = {
            "image": condition_image,
            "prompt": prompt,
            "control_image": condition_image,
            "num_inference_steps": num_inference_steps,
            "negative_prompt": negative_prompt,
            "height": condition_image.size[1],
            "width": condition_image.size[0],
            "guidance_scale": guidance_scale,
            **kwargs,
        }
        result = self.pipe.__call__(**kwargs)
        return Result.from_result(result)

    @torch.inference_mode()
    def process_scribble(
        self,
        image: List[Image.Image],
        prompt: Union[str, List[str]],
        negative_prompt: Union[str, List[str]],
        num_inference_steps: int,
        seed: int,
        height: int,
        width: int,
        guidance_scale: float = 7.5,
        **kwargs,
    ):
        if self.__current_task_name != "scribble":
            raise Exception("ControlNet is not loaded with scribble model")

        torch.manual_seed(seed)

        sdxl_args = (
            {
                "guidance_scale": 6,
                "adapter_conditioning_scale": 1.0,
                "adapter_conditioning_factor": 1.0,
            }
            if get_is_sdxl()
            else {}
        )

        kwargs = {
            "image": image,
            "prompt": prompt,
            "num_inference_steps": num_inference_steps,
            "negative_prompt": negative_prompt,
            "height": height,
            "width": width,
            "guidance_scale": guidance_scale,
            **sdxl_args,
            **kwargs,
        }
        result = self.pipe2.__call__(**kwargs)
        return Result.from_result(result)

    @torch.inference_mode()
    def process_linearart(
        self,
        imageUrl: str,
        prompt: Union[str, List[str]],
        negative_prompt: Union[str, List[str]],
        num_inference_steps: int,
        seed: int,
        height: int,
        width: int,
        guidance_scale: float = 7.5,
        **kwargs,
    ):
        if self.__current_task_name != "linearart":
            raise Exception("ControlNet is not loaded with linearart model")

        torch.manual_seed(seed)

        init_image = download_image(imageUrl).resize((width, height))
        condition_image = ControlNet.linearart_condition_image(init_image)

        # we use t2i adapter and the conditioning scale should always be 0.8
        sdxl_args = (
            {
                "guidance_scale": 6,
                "adapter_conditioning_scale": 1.0,
                "adapter_conditioning_factor": 1.0,
            }
            if get_is_sdxl()
            else {}
        )

        kwargs = {
            "image": [condition_image] * 4,
            "prompt": prompt,
            "num_inference_steps": num_inference_steps,
            "negative_prompt": negative_prompt,
            "height": height,
            "width": width,
            "guidance_scale": guidance_scale,
            **sdxl_args,
            **kwargs,
        }
        result = self.pipe2.__call__(**kwargs)
        return Result.from_result(result)

    def cleanup(self):
        """Doesn't do anything considering new diffusers has itself a cleanup mechanism
        after controlnet generation"""
        pass

    def detect_pose(self, imageUrl: str) -> Image.Image:
        detector = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
        image = download_image(imageUrl)
        image = detector.__call__(image)
        return image

    @staticmethod
    def scribble_image(image: Image.Image) -> Image.Image:
        processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
        image = processor.__call__(input_image=image, scribble=True)
        return image

    @staticmethod
    def linearart_condition_image(image: Image.Image, **kwargs) -> Image.Image:
        processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
        if get_is_sdxl():
            kwargs = {"detect_resolution": 384, **kwargs}

        image = processor.__call__(input_image=image, **kwargs)
        return image

    @staticmethod
    def depth_image(image: Image.Image) -> Image.Image:
        global midas, midas_transforms
        if "midas" not in globals():
            midas = torch.hub.load("intel-isl/MiDaS", "MiDaS").to("cuda")
            midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
        transform = midas_transforms.default_transform

        cv_image = np.array(image)
        img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)

        input_batch = transform(img).to("cuda")
        with torch.no_grad():
            prediction = midas(input_batch)

            prediction = torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze()

        output = prediction.cpu().numpy()
        formatted = (output * 255 / np.max(output)).astype("uint8")
        img = Image.fromarray(formatted)
        return img

    @staticmethod
    def pidinet_image(image: Image.Image) -> Image.Image:
        pidinet = PidiNetDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
        image = pidinet.__call__(input_image=image, apply_filter=True)
        return image

    @staticmethod
    def canny_detect_edge(image: Image.Image) -> Image.Image:
        image_array = np.array(image)

        low_threshold = 100
        high_threshold = 200

        image_array = cv2.Canny(image_array, low_threshold, high_threshold)
        image_array = image_array[:, :, None]
        image_array = np.concatenate([image_array, image_array, image_array], axis=2)
        canny_image = Image.fromarray(image_array)
        return canny_image

    def __resize_for_condition_image(self, image: Image.Image, resolution: int):
        input_image = image.convert("RGB")
        W, H = input_image.size
        k = float(resolution) / max(W, H)
        H *= k
        W *= k
        H = int(round(H / 64.0)) * 64
        W = int(round(W / 64.0)) * 64
        img = input_image.resize((W, H), resample=Image.LANCZOS)
        return img

    __model_normal = {
        "pose": "lllyasviel/control_v11f1p_sd15_depth, lllyasviel/control_v11p_sd15_openpose",
        "canny": "lllyasviel/control_v11p_sd15_canny",
        "linearart": "lllyasviel/control_v11p_sd15_lineart",
        "scribble": "lllyasviel/control_v11p_sd15_scribble",
        "tile_upscaler": "lllyasviel/control_v11f1e_sd15_tile",
    }
    __model_normal_types = {
        "pose": "controlnet",
        "canny": "controlnet",
        "linearart": "controlnet",
        "scribble": "controlnet",
        "tile_upscaler": "controlnet",
    }

    __model_sdxl = {
        "pose": "thibaud/controlnet-openpose-sdxl-1.0",
        "canny": "diffusers/controlnet-canny-sdxl-1.0",
        "linearart": "TencentARC/t2i-adapter-lineart-sdxl-1.0",
        "scribble": "TencentARC/t2i-adapter-sketch-sdxl-1.0",
        "tile_upscaler": None,
    }
    __model_sdxl_types = {
        "pose": "controlnet",
        "canny": "controlnet",
        "linearart": "t2i",
        "scribble": "t2i",
        "tile_upscaler": None,
    }