File size: 4,060 Bytes
19b3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import torch
import torch.nn as nn
import random
from saicinpainting.training.modules.depthwise_sep_conv import DepthWiseSeperableConv
class MultidilatedConv(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size, dilation_num=3, comb_mode='sum', equal_dim=True,
shared_weights=False, padding=1, min_dilation=1, shuffle_in_channels=False, use_depthwise=False, **kwargs):
super().__init__()
convs = []
self.equal_dim = equal_dim
assert comb_mode in ('cat_out', 'sum', 'cat_in', 'cat_both'), comb_mode
if comb_mode in ('cat_out', 'cat_both'):
self.cat_out = True
if equal_dim:
assert out_dim % dilation_num == 0
out_dims = [out_dim // dilation_num] * dilation_num
self.index = sum([[i + j * (out_dims[0]) for j in range(dilation_num)] for i in range(out_dims[0])], [])
else:
out_dims = [out_dim // 2 ** (i + 1) for i in range(dilation_num - 1)]
out_dims.append(out_dim - sum(out_dims))
index = []
starts = [0] + out_dims[:-1]
lengths = [out_dims[i] // out_dims[-1] for i in range(dilation_num)]
for i in range(out_dims[-1]):
for j in range(dilation_num):
index += list(range(starts[j], starts[j] + lengths[j]))
starts[j] += lengths[j]
self.index = index
assert(len(index) == out_dim)
self.out_dims = out_dims
else:
self.cat_out = False
self.out_dims = [out_dim] * dilation_num
if comb_mode in ('cat_in', 'cat_both'):
if equal_dim:
assert in_dim % dilation_num == 0
in_dims = [in_dim // dilation_num] * dilation_num
else:
in_dims = [in_dim // 2 ** (i + 1) for i in range(dilation_num - 1)]
in_dims.append(in_dim - sum(in_dims))
self.in_dims = in_dims
self.cat_in = True
else:
self.cat_in = False
self.in_dims = [in_dim] * dilation_num
conv_type = DepthWiseSeperableConv if use_depthwise else nn.Conv2d
dilation = min_dilation
for i in range(dilation_num):
if isinstance(padding, int):
cur_padding = padding * dilation
else:
cur_padding = padding[i]
convs.append(conv_type(
self.in_dims[i], self.out_dims[i], kernel_size, padding=cur_padding, dilation=dilation, **kwargs
))
if i > 0 and shared_weights:
convs[-1].weight = convs[0].weight
convs[-1].bias = convs[0].bias
dilation *= 2
self.convs = nn.ModuleList(convs)
self.shuffle_in_channels = shuffle_in_channels
if self.shuffle_in_channels:
# shuffle list as shuffling of tensors is nondeterministic
in_channels_permute = list(range(in_dim))
random.shuffle(in_channels_permute)
# save as buffer so it is saved and loaded with checkpoint
self.register_buffer('in_channels_permute', torch.tensor(in_channels_permute))
def forward(self, x):
if self.shuffle_in_channels:
x = x[:, self.in_channels_permute]
outs = []
if self.cat_in:
if self.equal_dim:
x = x.chunk(len(self.convs), dim=1)
else:
new_x = []
start = 0
for dim in self.in_dims:
new_x.append(x[:, start:start+dim])
start += dim
x = new_x
for i, conv in enumerate(self.convs):
if self.cat_in:
input = x[i]
else:
input = x
outs.append(conv(input))
if self.cat_out:
out = torch.cat(outs, dim=1)[:, self.index]
else:
out = sum(outs)
return out
|