File size: 15,507 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
from __future__ import print_function, division

"""
COUNTLESS performance test in Python.

python countless2d.py ./images/NAMEOFIMAGE
"""

import six
from six.moves import range
from collections import defaultdict
from functools import reduce
import operator 
import io
import os
from PIL import Image
import math
import numpy as np
import random
import sys
import time
from tqdm import tqdm
from scipy import ndimage

def simplest_countless(data):
  """
  Vectorized implementation of downsampling a 2D 
  image by 2 on each side using the COUNTLESS algorithm.
  
  data is a 2D numpy array with even dimensions.
  """
  sections = []
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  a, b, c, d = sections

  ab = a * (a == b) # PICK(A,B)
  ac = a * (a == c) # PICK(A,C)
  bc = b * (b == c) # PICK(B,C)

  a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed
  
  return a + (a == 0) * d # AB || AC || BC || D

def quick_countless(data):
  """
  Vectorized implementation of downsampling a 2D 
  image by 2 on each side using the COUNTLESS algorithm.
  
  data is a 2D numpy array with even dimensions.
  """
  sections = []
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  a, b, c, d = sections

  ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
  bc = b * (b == c) # PICK(B,C)

  a = ab_ac | bc # (PICK(A,B) || PICK(A,C)) or PICK(B,C)
  return a + (a == 0) * d # AB || AC || BC || D

def quickest_countless(data):
  """
  Vectorized implementation of downsampling a 2D 
  image by 2 on each side using the COUNTLESS algorithm.
  
  data is a 2D numpy array with even dimensions.
  """
  sections = []
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  a, b, c, d = sections

  ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
  ab_ac |= b * (b == c) # PICK(B,C)
  return ab_ac + (ab_ac == 0) * d # AB || AC || BC || D

def quick_countless_xor(data):
  """
  Vectorized implementation of downsampling a 2D 
  image by 2 on each side using the COUNTLESS algorithm.
  
  data is a 2D numpy array with even dimensions.
  """
  sections = []
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  a, b, c, d = sections

  ab = a ^ (a ^ b) # a or b
  ab += (ab != a) * ((ab ^ (ab ^ c)) - b) # b or c
  ab += (ab == c) * ((ab ^ (ab ^ d)) - c) # c or d
  return ab

def stippled_countless(data):
  """
  Vectorized implementation of downsampling a 2D 
  image by 2 on each side using the COUNTLESS algorithm
  that treats zero as "background" and inflates lone
  pixels.
  
  data is a 2D numpy array with even dimensions.
  """
  sections = []
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  a, b, c, d = sections

  ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
  ab_ac |= b * (b == c) # PICK(B,C)

  nonzero = a + (a == 0) * (b + (b == 0) * c)
  return ab_ac + (ab_ac == 0) * (d + (d == 0) * nonzero) # AB || AC || BC || D

def zero_corrected_countless(data):
  """
  Vectorized implementation of downsampling a 2D 
  image by 2 on each side using the COUNTLESS algorithm.
  
  data is a 2D numpy array with even dimensions.
  """
  # allows us to prevent losing 1/2 a bit of information 
  # at the top end by using a bigger type. Without this 255 is handled incorrectly.
  data, upgraded = upgrade_type(data) 

  # offset from zero, raw countless doesn't handle 0 correctly
  # we'll remove the extra 1 at the end.
  data += 1 

  sections = []
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  a, b, c, d = sections

  ab = a * (a == b) # PICK(A,B)
  ac = a * (a == c) # PICK(A,C)
  bc = b * (b == c) # PICK(B,C)

  a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed
  
  result = a + (a == 0) * d - 1 # a or d - 1

  if upgraded:
    return downgrade_type(result)

  # only need to reset data if we weren't upgraded 
  # b/c no copy was made in that case
  data -= 1

  return result

def countless_extreme(data):
  nonzeros = np.count_nonzero(data)
  # print("nonzeros", nonzeros)

  N = reduce(operator.mul, data.shape)

  if nonzeros == N:
    print("quick")
    return quick_countless(data)
  elif np.count_nonzero(data + 1) == N:
    print("quick")
    # print("upper", nonzeros)
    return quick_countless(data)
  else:
    return countless(data)


def countless(data):
  """
  Vectorized implementation of downsampling a 2D 
  image by 2 on each side using the COUNTLESS algorithm.
  
  data is a 2D numpy array with even dimensions.
  """
  # allows us to prevent losing 1/2 a bit of information 
  # at the top end by using a bigger type. Without this 255 is handled incorrectly.
  data, upgraded = upgrade_type(data) 

  # offset from zero, raw countless doesn't handle 0 correctly
  # we'll remove the extra 1 at the end.
  data += 1 

  sections = []
  
  # This loop splits the 2D array apart into four arrays that are
  # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), 
  # and (1,1) representing the A, B, C, and D positions from Figure 1.
  factor = (2,2)
  for offset in np.ndindex(factor):
    part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  a, b, c, d = sections

  ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
  ab_ac |= b * (b == c) # PICK(B,C)
  result = ab_ac + (ab_ac == 0) * d - 1 # (matches or d) - 1

  if upgraded:
    return downgrade_type(result)

  # only need to reset data if we weren't upgraded 
  # b/c no copy was made in that case
  data -= 1

  return result

def upgrade_type(arr):
  dtype = arr.dtype

  if dtype == np.uint8:
    return arr.astype(np.uint16), True
  elif dtype == np.uint16:
    return arr.astype(np.uint32), True
  elif dtype == np.uint32:
    return arr.astype(np.uint64), True

  return arr, False
  
def downgrade_type(arr):
  dtype = arr.dtype

  if dtype == np.uint64:
    return arr.astype(np.uint32)
  elif dtype == np.uint32:
    return arr.astype(np.uint16)
  elif dtype == np.uint16:
    return arr.astype(np.uint8)
  
  return arr

def odd_to_even(image):
  """
  To facilitate 2x2 downsampling segmentation, change an odd sized image into an even sized one.
  Works by mirroring the starting 1 pixel edge of the image on odd shaped sides.

  e.g. turn a 3x3x5 image into a 4x4x5 (the x and y are what are getting downsampled)
  
  For example: [ 3, 2, 4 ] => [ 3, 3, 2, 4 ] which is now easy to downsample.

  """
  shape = np.array(image.shape)

  offset = (shape % 2)[:2] # x,y offset
  
  # detect if we're dealing with an even
  # image. if so it's fine, just return.
  if not np.any(offset): 
    return image

  oddshape = image.shape[:2] + offset
  oddshape = np.append(oddshape, shape[2:])
  oddshape = oddshape.astype(int)

  newimg = np.empty(shape=oddshape, dtype=image.dtype)

  ox,oy = offset
  sx,sy = oddshape

  newimg[0,0] = image[0,0] # corner
  newimg[ox:sx,0] = image[:,0] # x axis line
  newimg[0,oy:sy] = image[0,:] # y axis line 

  return newimg

def counting(array):
    factor = (2, 2, 1)
    shape = array.shape

    while len(shape) < 4:
      array = np.expand_dims(array, axis=-1)
      shape = array.shape

    output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor))
    output = np.zeros(output_shape, dtype=array.dtype)

    for chan in range(0, shape[3]):
      for z in range(0, shape[2]):
        for x in range(0, shape[0], 2):
          for y in range(0, shape[1], 2):
            block = array[ x:x+2, y:y+2, z, chan ] # 2x2 block

            hashtable = defaultdict(int)
            for subx, suby in np.ndindex(block.shape[0], block.shape[1]):
              hashtable[block[subx, suby]] += 1

            best = (0, 0)
            for segid, val in six.iteritems(hashtable):
              if best[1] < val:
                best = (segid, val)

            output[ x // 2, y // 2, chan ] = best[0]
    
    return output

def ndzoom(array):
    if len(array.shape) == 3:
      ratio = ( 1 / 2.0, 1 / 2.0, 1.0 )
    else:
      ratio = ( 1 / 2.0, 1 / 2.0)
    return ndimage.interpolation.zoom(array, ratio, order=1)

def countless_if(array):
    factor = (2, 2, 1)
    shape = array.shape

    if len(shape) < 3:
      array = array[ :,:, np.newaxis ]
      shape = array.shape

    output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor))
    output = np.zeros(output_shape, dtype=array.dtype)

    for chan in range(0, shape[2]):
      for x in range(0, shape[0], 2):
        for y in range(0, shape[1], 2):
          block = array[ x:x+2, y:y+2, chan ] # 2x2 block

          if block[0,0] == block[1,0]:
            pick = block[0,0]
          elif block[0,0] == block[0,1]:
            pick = block[0,0]
          elif block[1,0] == block[0,1]:
            pick = block[1,0]
          else:
            pick = block[1,1]

          output[ x // 2, y // 2, chan ] = pick
    
    return np.squeeze(output)

def downsample_with_averaging(array):
  """
  Downsample x by factor using averaging.

  @return: The downsampled array, of the same type as x.
  """

  if len(array.shape) == 3:
    factor = (2,2,1)
  else:
    factor = (2,2)
  
  if np.array_equal(factor[:3], np.array([1,1,1])):
    return array

  output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor))
  temp = np.zeros(output_shape, float)
  counts = np.zeros(output_shape, np.int)
  for offset in np.ndindex(factor):
      part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
      indexing_expr = tuple(np.s_[:s] for s in part.shape)
      temp[indexing_expr] += part
      counts[indexing_expr] += 1
  return np.cast[array.dtype](temp / counts)

def downsample_with_max_pooling(array):

  factor = (2,2)

  if np.all(np.array(factor, int) == 1):
      return array

  sections = []

  for offset in np.ndindex(factor):
    part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
    sections.append(part)

  output = sections[0].copy()

  for section in sections[1:]:
    np.maximum(output, section, output)

  return output

def striding(array): 
  """Downsample x by factor using striding.

  @return: The downsampled array, of the same type as x.
  """
  factor = (2,2)
  if np.all(np.array(factor, int) == 1):
    return array
  return array[tuple(np.s_[::f] for f in factor)]

def benchmark():
  filename = sys.argv[1]
  img = Image.open(filename)
  data = np.array(img.getdata(), dtype=np.uint8)

  if len(data.shape) == 1:
    n_channels = 1
    reshape = (img.height, img.width)
  else:
    n_channels = min(data.shape[1], 3)
    data = data[:, :n_channels]
    reshape = (img.height, img.width, n_channels)

  data = data.reshape(reshape).astype(np.uint8)

  methods = [
    simplest_countless,
    quick_countless,
    quick_countless_xor,
    quickest_countless,
    stippled_countless,
    zero_corrected_countless,
    countless,
    downsample_with_averaging,
    downsample_with_max_pooling,
    ndzoom,
    striding,
    # countless_if,
    # counting,
  ]

  formats = {
    1: 'L',
    3: 'RGB',
    4: 'RGBA'
  }

  if not os.path.exists('./results'):
    os.mkdir('./results')

  N = 500
  img_size = float(img.width * img.height) / 1024.0 / 1024.0
  print("N = %d, %dx%d (%.2f MPx) %d chan, %s" % (N, img.width, img.height, img_size, n_channels, filename))
  print("Algorithm\tMPx/sec\tMB/sec\tSec")
  for fn in methods:
    print(fn.__name__, end='')
    sys.stdout.flush()

    start = time.time()
    # tqdm is here to show you what's going on the first time you run it.
    # Feel free to remove it to get slightly more accurate timing results.
    for _ in tqdm(range(N), desc=fn.__name__, disable=True):
      result = fn(data)
    end = time.time()
    print("\r", end='')

    total_time = (end - start)
    mpx = N * img_size / total_time
    mbytes = N * img_size * n_channels / total_time
    # Output in tab separated format to enable copy-paste into excel/numbers
    print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time))
    outimg = Image.fromarray(np.squeeze(result), formats[n_channels])
    outimg.save('./results/{}.png'.format(fn.__name__, "PNG"))

if __name__ == '__main__':
  benchmark()


# Example results:
# N = 5, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png
# Function                        MPx/sec   MB/sec     Sec
# simplest_countless              752.855   752.855    0.01
# quick_countless                 920.328   920.328    0.01
# zero_corrected_countless        534.143   534.143    0.01
# countless                       644.247   644.247    0.01
# downsample_with_averaging       372.575   372.575    0.01
# downsample_with_max_pooling     974.060   974.060    0.01
# ndzoom                          137.517   137.517    0.04
# striding                      38550.588 38550.588    0.00
# countless_if                      4.377     4.377    1.14
# counting                          0.117     0.117   42.85

# Run without non-numpy implementations:
# N = 2000, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png
# Algorithm                       MPx/sec   MB/sec     Sec
# simplest_countless              800.522   800.522    2.50
# quick_countless                 945.420   945.420    2.12
# quickest_countless              947.256   947.256    2.11
# stippled_countless              544.049   544.049    3.68
# zero_corrected_countless        575.310   575.310    3.48
# countless                       646.684   646.684    3.09
# downsample_with_averaging       385.132   385.132    5.19
# downsample_with_max_poolin      988.361   988.361    2.02
# ndzoom                          163.104   163.104   12.26
# striding                      81589.340 81589.340    0.02