File size: 15,507 Bytes
19b3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
from __future__ import print_function, division
"""
COUNTLESS performance test in Python.
python countless2d.py ./images/NAMEOFIMAGE
"""
import six
from six.moves import range
from collections import defaultdict
from functools import reduce
import operator
import io
import os
from PIL import Image
import math
import numpy as np
import random
import sys
import time
from tqdm import tqdm
from scipy import ndimage
def simplest_countless(data):
"""
Vectorized implementation of downsampling a 2D
image by 2 on each side using the COUNTLESS algorithm.
data is a 2D numpy array with even dimensions.
"""
sections = []
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
a, b, c, d = sections
ab = a * (a == b) # PICK(A,B)
ac = a * (a == c) # PICK(A,C)
bc = b * (b == c) # PICK(B,C)
a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed
return a + (a == 0) * d # AB || AC || BC || D
def quick_countless(data):
"""
Vectorized implementation of downsampling a 2D
image by 2 on each side using the COUNTLESS algorithm.
data is a 2D numpy array with even dimensions.
"""
sections = []
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
a, b, c, d = sections
ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
bc = b * (b == c) # PICK(B,C)
a = ab_ac | bc # (PICK(A,B) || PICK(A,C)) or PICK(B,C)
return a + (a == 0) * d # AB || AC || BC || D
def quickest_countless(data):
"""
Vectorized implementation of downsampling a 2D
image by 2 on each side using the COUNTLESS algorithm.
data is a 2D numpy array with even dimensions.
"""
sections = []
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
a, b, c, d = sections
ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
ab_ac |= b * (b == c) # PICK(B,C)
return ab_ac + (ab_ac == 0) * d # AB || AC || BC || D
def quick_countless_xor(data):
"""
Vectorized implementation of downsampling a 2D
image by 2 on each side using the COUNTLESS algorithm.
data is a 2D numpy array with even dimensions.
"""
sections = []
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
a, b, c, d = sections
ab = a ^ (a ^ b) # a or b
ab += (ab != a) * ((ab ^ (ab ^ c)) - b) # b or c
ab += (ab == c) * ((ab ^ (ab ^ d)) - c) # c or d
return ab
def stippled_countless(data):
"""
Vectorized implementation of downsampling a 2D
image by 2 on each side using the COUNTLESS algorithm
that treats zero as "background" and inflates lone
pixels.
data is a 2D numpy array with even dimensions.
"""
sections = []
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
a, b, c, d = sections
ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
ab_ac |= b * (b == c) # PICK(B,C)
nonzero = a + (a == 0) * (b + (b == 0) * c)
return ab_ac + (ab_ac == 0) * (d + (d == 0) * nonzero) # AB || AC || BC || D
def zero_corrected_countless(data):
"""
Vectorized implementation of downsampling a 2D
image by 2 on each side using the COUNTLESS algorithm.
data is a 2D numpy array with even dimensions.
"""
# allows us to prevent losing 1/2 a bit of information
# at the top end by using a bigger type. Without this 255 is handled incorrectly.
data, upgraded = upgrade_type(data)
# offset from zero, raw countless doesn't handle 0 correctly
# we'll remove the extra 1 at the end.
data += 1
sections = []
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
a, b, c, d = sections
ab = a * (a == b) # PICK(A,B)
ac = a * (a == c) # PICK(A,C)
bc = b * (b == c) # PICK(B,C)
a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed
result = a + (a == 0) * d - 1 # a or d - 1
if upgraded:
return downgrade_type(result)
# only need to reset data if we weren't upgraded
# b/c no copy was made in that case
data -= 1
return result
def countless_extreme(data):
nonzeros = np.count_nonzero(data)
# print("nonzeros", nonzeros)
N = reduce(operator.mul, data.shape)
if nonzeros == N:
print("quick")
return quick_countless(data)
elif np.count_nonzero(data + 1) == N:
print("quick")
# print("upper", nonzeros)
return quick_countless(data)
else:
return countless(data)
def countless(data):
"""
Vectorized implementation of downsampling a 2D
image by 2 on each side using the COUNTLESS algorithm.
data is a 2D numpy array with even dimensions.
"""
# allows us to prevent losing 1/2 a bit of information
# at the top end by using a bigger type. Without this 255 is handled incorrectly.
data, upgraded = upgrade_type(data)
# offset from zero, raw countless doesn't handle 0 correctly
# we'll remove the extra 1 at the end.
data += 1
sections = []
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
a, b, c, d = sections
ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
ab_ac |= b * (b == c) # PICK(B,C)
result = ab_ac + (ab_ac == 0) * d - 1 # (matches or d) - 1
if upgraded:
return downgrade_type(result)
# only need to reset data if we weren't upgraded
# b/c no copy was made in that case
data -= 1
return result
def upgrade_type(arr):
dtype = arr.dtype
if dtype == np.uint8:
return arr.astype(np.uint16), True
elif dtype == np.uint16:
return arr.astype(np.uint32), True
elif dtype == np.uint32:
return arr.astype(np.uint64), True
return arr, False
def downgrade_type(arr):
dtype = arr.dtype
if dtype == np.uint64:
return arr.astype(np.uint32)
elif dtype == np.uint32:
return arr.astype(np.uint16)
elif dtype == np.uint16:
return arr.astype(np.uint8)
return arr
def odd_to_even(image):
"""
To facilitate 2x2 downsampling segmentation, change an odd sized image into an even sized one.
Works by mirroring the starting 1 pixel edge of the image on odd shaped sides.
e.g. turn a 3x3x5 image into a 4x4x5 (the x and y are what are getting downsampled)
For example: [ 3, 2, 4 ] => [ 3, 3, 2, 4 ] which is now easy to downsample.
"""
shape = np.array(image.shape)
offset = (shape % 2)[:2] # x,y offset
# detect if we're dealing with an even
# image. if so it's fine, just return.
if not np.any(offset):
return image
oddshape = image.shape[:2] + offset
oddshape = np.append(oddshape, shape[2:])
oddshape = oddshape.astype(int)
newimg = np.empty(shape=oddshape, dtype=image.dtype)
ox,oy = offset
sx,sy = oddshape
newimg[0,0] = image[0,0] # corner
newimg[ox:sx,0] = image[:,0] # x axis line
newimg[0,oy:sy] = image[0,:] # y axis line
return newimg
def counting(array):
factor = (2, 2, 1)
shape = array.shape
while len(shape) < 4:
array = np.expand_dims(array, axis=-1)
shape = array.shape
output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor))
output = np.zeros(output_shape, dtype=array.dtype)
for chan in range(0, shape[3]):
for z in range(0, shape[2]):
for x in range(0, shape[0], 2):
for y in range(0, shape[1], 2):
block = array[ x:x+2, y:y+2, z, chan ] # 2x2 block
hashtable = defaultdict(int)
for subx, suby in np.ndindex(block.shape[0], block.shape[1]):
hashtable[block[subx, suby]] += 1
best = (0, 0)
for segid, val in six.iteritems(hashtable):
if best[1] < val:
best = (segid, val)
output[ x // 2, y // 2, chan ] = best[0]
return output
def ndzoom(array):
if len(array.shape) == 3:
ratio = ( 1 / 2.0, 1 / 2.0, 1.0 )
else:
ratio = ( 1 / 2.0, 1 / 2.0)
return ndimage.interpolation.zoom(array, ratio, order=1)
def countless_if(array):
factor = (2, 2, 1)
shape = array.shape
if len(shape) < 3:
array = array[ :,:, np.newaxis ]
shape = array.shape
output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor))
output = np.zeros(output_shape, dtype=array.dtype)
for chan in range(0, shape[2]):
for x in range(0, shape[0], 2):
for y in range(0, shape[1], 2):
block = array[ x:x+2, y:y+2, chan ] # 2x2 block
if block[0,0] == block[1,0]:
pick = block[0,0]
elif block[0,0] == block[0,1]:
pick = block[0,0]
elif block[1,0] == block[0,1]:
pick = block[1,0]
else:
pick = block[1,1]
output[ x // 2, y // 2, chan ] = pick
return np.squeeze(output)
def downsample_with_averaging(array):
"""
Downsample x by factor using averaging.
@return: The downsampled array, of the same type as x.
"""
if len(array.shape) == 3:
factor = (2,2,1)
else:
factor = (2,2)
if np.array_equal(factor[:3], np.array([1,1,1])):
return array
output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor))
temp = np.zeros(output_shape, float)
counts = np.zeros(output_shape, np.int)
for offset in np.ndindex(factor):
part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
indexing_expr = tuple(np.s_[:s] for s in part.shape)
temp[indexing_expr] += part
counts[indexing_expr] += 1
return np.cast[array.dtype](temp / counts)
def downsample_with_max_pooling(array):
factor = (2,2)
if np.all(np.array(factor, int) == 1):
return array
sections = []
for offset in np.ndindex(factor):
part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
output = sections[0].copy()
for section in sections[1:]:
np.maximum(output, section, output)
return output
def striding(array):
"""Downsample x by factor using striding.
@return: The downsampled array, of the same type as x.
"""
factor = (2,2)
if np.all(np.array(factor, int) == 1):
return array
return array[tuple(np.s_[::f] for f in factor)]
def benchmark():
filename = sys.argv[1]
img = Image.open(filename)
data = np.array(img.getdata(), dtype=np.uint8)
if len(data.shape) == 1:
n_channels = 1
reshape = (img.height, img.width)
else:
n_channels = min(data.shape[1], 3)
data = data[:, :n_channels]
reshape = (img.height, img.width, n_channels)
data = data.reshape(reshape).astype(np.uint8)
methods = [
simplest_countless,
quick_countless,
quick_countless_xor,
quickest_countless,
stippled_countless,
zero_corrected_countless,
countless,
downsample_with_averaging,
downsample_with_max_pooling,
ndzoom,
striding,
# countless_if,
# counting,
]
formats = {
1: 'L',
3: 'RGB',
4: 'RGBA'
}
if not os.path.exists('./results'):
os.mkdir('./results')
N = 500
img_size = float(img.width * img.height) / 1024.0 / 1024.0
print("N = %d, %dx%d (%.2f MPx) %d chan, %s" % (N, img.width, img.height, img_size, n_channels, filename))
print("Algorithm\tMPx/sec\tMB/sec\tSec")
for fn in methods:
print(fn.__name__, end='')
sys.stdout.flush()
start = time.time()
# tqdm is here to show you what's going on the first time you run it.
# Feel free to remove it to get slightly more accurate timing results.
for _ in tqdm(range(N), desc=fn.__name__, disable=True):
result = fn(data)
end = time.time()
print("\r", end='')
total_time = (end - start)
mpx = N * img_size / total_time
mbytes = N * img_size * n_channels / total_time
# Output in tab separated format to enable copy-paste into excel/numbers
print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time))
outimg = Image.fromarray(np.squeeze(result), formats[n_channels])
outimg.save('./results/{}.png'.format(fn.__name__, "PNG"))
if __name__ == '__main__':
benchmark()
# Example results:
# N = 5, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png
# Function MPx/sec MB/sec Sec
# simplest_countless 752.855 752.855 0.01
# quick_countless 920.328 920.328 0.01
# zero_corrected_countless 534.143 534.143 0.01
# countless 644.247 644.247 0.01
# downsample_with_averaging 372.575 372.575 0.01
# downsample_with_max_pooling 974.060 974.060 0.01
# ndzoom 137.517 137.517 0.04
# striding 38550.588 38550.588 0.00
# countless_if 4.377 4.377 1.14
# counting 0.117 0.117 42.85
# Run without non-numpy implementations:
# N = 2000, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png
# Algorithm MPx/sec MB/sec Sec
# simplest_countless 800.522 800.522 2.50
# quick_countless 945.420 945.420 2.12
# quickest_countless 947.256 947.256 2.11
# stippled_countless 544.049 544.049 3.68
# zero_corrected_countless 575.310 575.310 3.48
# countless 646.684 646.684 3.09
# downsample_with_averaging 385.132 385.132 5.19
# downsample_with_max_poolin 988.361 988.361 2.02
# ndzoom 163.104 163.104 12.26
# striding 81589.340 81589.340 0.02
|