File size: 10,662 Bytes
19b3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
from six.moves import range
from PIL import Image
import numpy as np
import io
import time
import math
import random
import sys
from collections import defaultdict
from copy import deepcopy
from itertools import combinations
from functools import reduce
from tqdm import tqdm
from memory_profiler import profile
def countless5(a,b,c,d,e):
"""First stage of generalizing from countless2d.
You have five slots: A, B, C, D, E
You can decide if something is the winner by first checking for
matches of three, then matches of two, then picking just one if
the other two tries fail. In countless2d, you just check for matches
of two and then pick one of them otherwise.
Unfortunately, you need to check ABC, ABD, ABE, BCD, BDE, & CDE.
Then you need to check AB, AC, AD, BC, BD
We skip checking E because if none of these match, we pick E. We can
skip checking AE, BE, CE, DE since if any of those match, E is our boy
so it's redundant.
So countless grows cominatorially in complexity.
"""
sections = [ a,b,c,d,e ]
p2 = lambda q,r: q * (q == r) # q if p == q else 0
p3 = lambda q,r,s: q * ( (q == r) & (r == s) ) # q if q == r == s else 0
lor = lambda x,y: x + (x == 0) * y
results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) )
results3 = reduce(lor, results3)
results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) )
results2 = reduce(lor, results2)
return reduce(lor, (results3, results2, e))
def countless8(a,b,c,d,e,f,g,h):
"""Extend countless5 to countless8. Same deal, except we also
need to check for matches of length 4."""
sections = [ a, b, c, d, e, f, g, h ]
p2 = lambda q,r: q * (q == r)
p3 = lambda q,r,s: q * ( (q == r) & (r == s) )
p4 = lambda p,q,r,s: p * ( (p == q) & (q == r) & (r == s) )
lor = lambda x,y: x + (x == 0) * y
results4 = ( p4(x,y,z,w) for x,y,z,w in combinations(sections, 4) )
results4 = reduce(lor, results4)
results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) )
results3 = reduce(lor, results3)
# We can always use our shortcut of omitting the last element
# for N choose 2
results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) )
results2 = reduce(lor, results2)
return reduce(lor, [ results4, results3, results2, h ])
def dynamic_countless3d(data):
"""countless8 + dynamic programming. ~2x faster"""
sections = []
# shift zeros up one so they don't interfere with bitwise operators
# we'll shift down at the end
data += 1
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
pick = lambda a,b: a * (a == b)
lor = lambda x,y: x + (x == 0) * y
subproblems2 = {}
results2 = None
for x,y in combinations(range(7), 2):
res = pick(sections[x], sections[y])
subproblems2[(x,y)] = res
if results2 is not None:
results2 += (results2 == 0) * res
else:
results2 = res
subproblems3 = {}
results3 = None
for x,y,z in combinations(range(8), 3):
res = pick(subproblems2[(x,y)], sections[z])
if z != 7:
subproblems3[(x,y,z)] = res
if results3 is not None:
results3 += (results3 == 0) * res
else:
results3 = res
results3 = reduce(lor, (results3, results2, sections[-1]))
# free memory
results2 = None
subproblems2 = None
res = None
results4 = ( pick(subproblems3[(x,y,z)], sections[w]) for x,y,z,w in combinations(range(8), 4) )
results4 = reduce(lor, results4)
subproblems3 = None # free memory
final_result = lor(results4, results3) - 1
data -= 1
return final_result
def countless3d(data):
"""Now write countless8 in such a way that it could be used
to process an image."""
sections = []
# shift zeros up one so they don't interfere with bitwise operators
# we'll shift down at the end
data += 1
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
factor = (2,2,2)
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
p2 = lambda q,r: q * (q == r)
p3 = lambda q,r,s: q * ( (q == r) & (r == s) )
p4 = lambda p,q,r,s: p * ( (p == q) & (q == r) & (r == s) )
lor = lambda x,y: x + (x == 0) * y
results4 = ( p4(x,y,z,w) for x,y,z,w in combinations(sections, 4) )
results4 = reduce(lor, results4)
results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) )
results3 = reduce(lor, results3)
results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) )
results2 = reduce(lor, results2)
final_result = reduce(lor, (results4, results3, results2, sections[-1])) - 1
data -= 1
return final_result
def countless_generalized(data, factor):
assert len(data.shape) == len(factor)
sections = []
mode_of = reduce(lambda x,y: x * y, factor)
majority = int(math.ceil(float(mode_of) / 2))
data += 1
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
def pick(elements):
eq = ( elements[i] == elements[i+1] for i in range(len(elements) - 1) )
anded = reduce(lambda p,q: p & q, eq)
return elements[0] * anded
def logical_or(x,y):
return x + (x == 0) * y
result = ( pick(combo) for combo in combinations(sections, majority) )
result = reduce(logical_or, result)
for i in range(majority - 1, 3-1, -1): # 3-1 b/c of exclusive bounds
partial_result = ( pick(combo) for combo in combinations(sections, i) )
partial_result = reduce(logical_or, partial_result)
result = logical_or(result, partial_result)
partial_result = ( pick(combo) for combo in combinations(sections[:-1], 2) )
partial_result = reduce(logical_or, partial_result)
result = logical_or(result, partial_result)
result = logical_or(result, sections[-1]) - 1
data -= 1
return result
def dynamic_countless_generalized(data, factor):
assert len(data.shape) == len(factor)
sections = []
mode_of = reduce(lambda x,y: x * y, factor)
majority = int(math.ceil(float(mode_of) / 2))
data += 1 # offset from zero
# This loop splits the 2D array apart into four arrays that are
# all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
# and (1,1) representing the A, B, C, and D positions from Figure 1.
for offset in np.ndindex(factor):
part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
pick = lambda a,b: a * (a == b)
lor = lambda x,y: x + (x == 0) * y # logical or
subproblems = [ {}, {} ]
results2 = None
for x,y in combinations(range(len(sections) - 1), 2):
res = pick(sections[x], sections[y])
subproblems[0][(x,y)] = res
if results2 is not None:
results2 = lor(results2, res)
else:
results2 = res
results = [ results2 ]
for r in range(3, majority+1):
r_results = None
for combo in combinations(range(len(sections)), r):
res = pick(subproblems[0][combo[:-1]], sections[combo[-1]])
if combo[-1] != len(sections) - 1:
subproblems[1][combo] = res
if r_results is not None:
r_results = lor(r_results, res)
else:
r_results = res
results.append(r_results)
subproblems[0] = subproblems[1]
subproblems[1] = {}
results.reverse()
final_result = lor(reduce(lor, results), sections[-1]) - 1
data -= 1
return final_result
def downsample_with_averaging(array):
"""
Downsample x by factor using averaging.
@return: The downsampled array, of the same type as x.
"""
factor = (2,2,2)
if np.array_equal(factor[:3], np.array([1,1,1])):
return array
output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor))
temp = np.zeros(output_shape, float)
counts = np.zeros(output_shape, np.int)
for offset in np.ndindex(factor):
part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
indexing_expr = tuple(np.s_[:s] for s in part.shape)
temp[indexing_expr] += part
counts[indexing_expr] += 1
return np.cast[array.dtype](temp / counts)
def downsample_with_max_pooling(array):
factor = (2,2,2)
sections = []
for offset in np.ndindex(factor):
part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
sections.append(part)
output = sections[0].copy()
for section in sections[1:]:
np.maximum(output, section, output)
return output
def striding(array):
"""Downsample x by factor using striding.
@return: The downsampled array, of the same type as x.
"""
factor = (2,2,2)
if np.all(np.array(factor, int) == 1):
return array
return array[tuple(np.s_[::f] for f in factor)]
def benchmark():
def countless3d_generalized(img):
return countless_generalized(img, (2,8,1))
def countless3d_dynamic_generalized(img):
return dynamic_countless_generalized(img, (8,8,1))
methods = [
# countless3d,
# dynamic_countless3d,
countless3d_generalized,
# countless3d_dynamic_generalized,
# striding,
# downsample_with_averaging,
# downsample_with_max_pooling
]
data = np.zeros(shape=(16**2, 16**2, 16**2), dtype=np.uint8) + 1
N = 5
print('Algorithm\tMPx\tMB/sec\tSec\tN=%d' % N)
for fn in methods:
start = time.time()
for _ in range(N):
result = fn(data)
end = time.time()
total_time = (end - start)
mpx = N * float(data.shape[0] * data.shape[1] * data.shape[2]) / total_time / 1024.0 / 1024.0
mbytes = mpx * np.dtype(data.dtype).itemsize
# Output in tab separated format to enable copy-paste into excel/numbers
print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time))
if __name__ == '__main__':
benchmark()
# Algorithm MPx MB/sec Sec N=5
# countless3d 10.564 10.564 60.58
# dynamic_countless3d 22.717 22.717 28.17
# countless3d_generalized 9.702 9.702 65.96
# countless3d_dynamic_generalized 22.720 22.720 28.17
# striding 253360.506 253360.506 0.00
# downsample_with_averaging 224.098 224.098 2.86
# downsample_with_max_pooling 690.474 690.474 0.93
|