File size: 2,938 Bytes
19b3da3
 
 
10230ea
19b3da3
 
 
10230ea
 
 
 
 
 
 
19b3da3
 
 
fd5252e
 
10230ea
 
 
19b3da3
fd5252e
 
 
10230ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd5252e
19b3da3
 
10230ea
 
fd5252e
 
0daeeb0
10230ea
 
 
 
 
 
 
 
0daeeb0
 
10230ea
 
 
 
 
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
f70725b
 
19b3da3
 
 
 
 
 
f70725b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from typing import List, Union

import torch
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionXLInpaintPipeline

from internals.pipelines.commons import AbstractPipeline
from internals.util.commons import disable_safety_checker, download_image
from internals.util.config import (
    get_hf_cache_dir,
    get_hf_token,
    get_is_sdxl,
    get_inpaint_model_path,
    get_model_dir,
)


class InPainter(AbstractPipeline):
    __loaded = False

    def init(self, pipeline: AbstractPipeline):
        self.__base = pipeline

    def load(self):
        if self.__loaded:
            return

        if hasattr(self, "__base") and get_inpaint_model_path() == get_model_dir():
            self.create(self.__base)
            self.__loaded = True
            return

        if get_is_sdxl():
            self.pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
                get_inpaint_model_path(),
                torch_dtype=torch.float16,
                cache_dir=get_hf_cache_dir(),
                use_auth_token=get_hf_token(),
            ).to("cuda")
        else:
            self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
                get_inpaint_model_path(),
                torch_dtype=torch.float16,
                cache_dir=get_hf_cache_dir(),
                use_auth_token=get_hf_token(),
            ).to("cuda")

        disable_safety_checker(self.pipe)

        self.__patch()

        self.__loaded = True

    def create(self, pipeline: AbstractPipeline):
        if get_is_sdxl():
            self.pipe = StableDiffusionXLInpaintPipeline(**pipeline.pipe.components).to(
                "cuda"
            )
        else:
            self.pipe = StableDiffusionInpaintPipeline(**pipeline.pipe.components).to(
                "cuda"
            )
        disable_safety_checker(self.pipe)

        self.__patch()

    def __patch(self):
        if get_is_sdxl():
            self.pipe.enable_vae_tiling()
            self.pipe.enable_vae_slicing()
        self.pipe.enable_xformers_memory_efficient_attention()

    @torch.inference_mode()
    def process(
        self,
        image_url: str,
        mask_image_url: str,
        width: int,
        height: int,
        seed: int,
        prompt: Union[str, List[str]],
        negative_prompt: Union[str, List[str]],
        num_inference_steps: int,
        **kwargs,
    ):
        torch.manual_seed(seed)

        input_img = download_image(image_url).resize((width, height))
        mask_img = download_image(mask_image_url).resize((width, height))

        kwargs = {
            "prompt": prompt,
            "image": input_img,
            "mask_image": mask_img,
            "height": height,
            "width": width,
            "negative_prompt": negative_prompt,
            "num_inference_steps": num_inference_steps,
            **kwargs,
        }
        return self.pipe.__call__(**kwargs).images