File size: 66,688 Bytes
ea5c647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
import inspect
import re
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Union

import diffusers
import numpy as np
import PIL
import torch
from accelerate import init_empty_weights
from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    EulerDiscreteScheduler,
    LCMScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionXLPipeline,
)
from diffusers.configuration_utils import FrozenDict
from diffusers.utils.deprecation_utils import deprecate
from einops import rearrange
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from safetensors.torch import load_file
from tqdm import tqdm
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

import external.llite.library.model_util as model_util
import external.llite.library.sdxl_model_util as sdxl_model_util
import external.llite.library.sdxl_original_unet as sdxl_original_unet
import external.llite.library.sdxl_train_util as sdxl_train_util
import external.llite.library.train_util as train_util
from external.llite.library.original_unet import FlashAttentionFunction
from external.llite.library.sdxl_original_unet import InferSdxlUNet2DConditionModel
from external.llite.networks.control_net_lllite import ControlNetLLLite
from external.llite.networks.lora import LoRANetwork
from internals.pipelines.commons import AbstractPipeline
from internals.util.cache import clear_cuda_and_gc
from internals.util.commons import download_file


class PipelineLike:
    def __init__(
        self,
        device,
        vae: AutoencoderKL,
        text_encoders: List[CLIPTextModel],
        tokenizers: List[CLIPTokenizer],
        unet: InferSdxlUNet2DConditionModel,
        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
        clip_skip: int,
    ):
        super().__init__()
        self.device = device
        self.clip_skip = clip_skip

        if (
            hasattr(scheduler.config, "steps_offset")
            and scheduler.config.steps_offset != 1
        ):
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate(
                "steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
            )
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if (
            hasattr(scheduler.config, "clip_sample")
            and scheduler.config.clip_sample is True
        ):
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate(
                "clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
            )
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

        self.vae = vae
        self.text_encoders = text_encoders
        self.tokenizers = tokenizers
        self.unet: InferSdxlUNet2DConditionModel = unet
        self.scheduler = scheduler
        self.safety_checker = None

        self.clip_vision_model: CLIPVisionModelWithProjection = None
        self.clip_vision_processor: CLIPImageProcessor = None
        self.clip_vision_strength = 0.0

        # Textual Inversion
        self.token_replacements_list = []
        for _ in range(len(self.text_encoders)):
            self.token_replacements_list.append({})

        # ControlNet # not supported yet
        self.control_nets: List[ControlNetLLLite] = []
        self.control_net_enabled = True  # control_netsが空ならTrueでもFalseでもControlNetは動作しない

    # Textual Inversion
    def add_token_replacement(self, text_encoder_index, target_token_id, rep_token_ids):
        self.token_replacements_list[text_encoder_index][
            target_token_id
        ] = rep_token_ids

    def set_enable_control_net(self, en: bool):
        self.control_net_enabled = en

    def preprocess_image(self, image):
        w, h = image.size
        # resize to integer multiple of 32
        w, h = map(lambda x: x - x % 32, (w, h))
        image = image.resize((w, h), resample=PIL.Image.LANCZOS)
        image = np.array(image).astype(np.float32) / 255.0
        image = image[None].transpose(0, 3, 1, 2)
        image = torch.from_numpy(image)
        return 2.0 * image - 1.0

    def get_unweighted_text_embeddings(
        self,
        text_encoder: CLIPTextModel,
        text_input: torch.Tensor,
        chunk_length: int,
        clip_skip: int,
        eos: int,
        pad: int,
        no_boseos_middle: Optional[bool] = True,
    ):
        """
        When the length of tokens is a multiple of the capacity of the text encoder,
        it should be split into chunks and sent to the text encoder individually.
        """
        max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
        if max_embeddings_multiples > 1:
            text_embeddings = []
            pool = None
            for i in range(max_embeddings_multiples):
                # extract the i-th chunk
                text_input_chunk = text_input[
                    :, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2
                ].clone()

                # cover the head and the tail by the starting and the ending tokens
                text_input_chunk[:, 0] = text_input[0, 0]
                if pad == eos:  # v1
                    text_input_chunk[:, -1] = text_input[0, -1]
                else:  # v2
                    for j in range(len(text_input_chunk)):
                        # 最後に普通の文字がある
                        if (
                            text_input_chunk[j, -1] != eos
                            and text_input_chunk[j, -1] != pad
                        ):
                            text_input_chunk[j, -1] = eos
                        if text_input_chunk[j, 1] == pad:  # BOSだけであとはPAD
                            text_input_chunk[j, 1] = eos

                # -2 is same for Text Encoder 1 and 2
                enc_out = text_encoder(
                    text_input_chunk, output_hidden_states=True, return_dict=True
                )
                text_embedding = enc_out["hidden_states"][-2]
                if pool is None:
                    # use 1st chunk, if provided
                    pool = enc_out.get("text_embeds", None)
                    if pool is not None:
                        pool = train_util.pool_workaround(
                            text_encoder,
                            enc_out["last_hidden_state"],
                            text_input_chunk,
                            eos,
                        )

                if no_boseos_middle:
                    if i == 0:
                        # discard the ending token
                        text_embedding = text_embedding[:, :-1]
                    elif i == max_embeddings_multiples - 1:
                        # discard the starting token
                        text_embedding = text_embedding[:, 1:]
                    else:
                        # discard both starting and ending tokens
                        text_embedding = text_embedding[:, 1:-1]

                text_embeddings.append(text_embedding)
            text_embeddings = torch.concat(text_embeddings, axis=1)
        else:
            enc_out = text_encoder(
                text_input, output_hidden_states=True, return_dict=True
            )
            text_embeddings = enc_out["hidden_states"][-2]
            # text encoder 1 doesn't return this
            pool = enc_out.get("text_embeds", None)
            if pool is not None:
                pool = train_util.pool_workaround(
                    text_encoder, enc_out["last_hidden_state"], text_input, eos
                )
        return text_embeddings, pool

    def preprocess_mask(self, mask):
        mask = mask.convert("L")
        w, h = mask.size
        # resize to integer multiple of 32
        w, h = map(lambda x: x - x % 32, (w, h))
        mask = mask.resize((w // 8, h // 8), resample=PIL.Image.BILINEAR)  # LANCZOS)
        mask = np.array(mask).astype(np.float32) / 255.0
        mask = np.tile(mask, (4, 1, 1))
        mask = mask[None].transpose(0, 1, 2, 3)  # what does this step do?
        mask = 1 - mask  # repaint white, keep black
        mask = torch.from_numpy(mask)
        return mask

    def get_prompts_with_weights(
        self,
        tokenizer: CLIPTokenizer,
        token_replacer,
        prompt: List[str],
        max_length: int,
    ):
        r"""
        Tokenize a list of prompts and return its tokens with weights of each token.
        No padding, starting or ending token is included.
        """
        tokens = []
        weights = []
        truncated = False

        def parse_prompt_attention(text):
            """
            Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
            Accepted tokens are:
            (abc) - increases attention to abc by a multiplier of 1.1
            (abc:3.12) - increases attention to abc by a multiplier of 3.12
            [abc] - decreases attention to abc by a multiplier of 1.1
            \( - literal character '('
            \[ - literal character '['
            \) - literal character ')'
            \] - literal character ']'
            \\ - literal character '\'
            anything else - just text
            >>> parse_prompt_attention('normal text')
            [['normal text', 1.0]]
            >>> parse_prompt_attention('an (important) word')
            [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
            >>> parse_prompt_attention('(unbalanced')
            [['unbalanced', 1.1]]
            >>> parse_prompt_attention('\(literal\]')
            [['(literal]', 1.0]]
            >>> parse_prompt_attention('(unnecessary)(parens)')
            [['unnecessaryparens', 1.1]]
            >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
            [['a ', 1.0],
            ['house', 1.5730000000000004],
            [' ', 1.1],
            ['on', 1.0],
            [' a ', 1.1],
            ['hill', 0.55],
            [', sun, ', 1.1],
            ['sky', 1.4641000000000006],
            ['.', 1.1]]
            """

            res = []
            round_brackets = []
            square_brackets = []

            round_bracket_multiplier = 1.1
            square_bracket_multiplier = 1 / 1.1

            def multiply_range(start_position, multiplier):
                for p in range(start_position, len(res)):
                    res[p][1] *= multiplier

            # keep break as separate token
            text = text.replace("BREAK", "\\BREAK\\")
            re_attention = re.compile(
                r"""
            \\\(|
            \\\)|
            \\\[|
            \\]|
            \\\\|
            \\|
            \(|
            \[|
            :([+-]?[.\d]+)\)|
            \)|
            ]|
            [^\\()\[\]:]+|
            :
            """,
                re.X,
            )
            for m in re_attention.finditer(text):
                text = m.group(0)
                weight = m.group(1)

                if text.startswith("\\"):
                    res.append([text[1:], 1.0])
                elif text == "(":
                    round_brackets.append(len(res))
                elif text == "[":
                    square_brackets.append(len(res))
                elif weight is not None and len(round_brackets) > 0:
                    multiply_range(round_brackets.pop(), float(weight))
                elif text == ")" and len(round_brackets) > 0:
                    multiply_range(round_brackets.pop(), round_bracket_multiplier)
                elif text == "]" and len(square_brackets) > 0:
                    multiply_range(square_brackets.pop(), square_bracket_multiplier)
                else:
                    res.append([text, 1.0])

            for pos in round_brackets:
                multiply_range(pos, round_bracket_multiplier)

            for pos in square_brackets:
                multiply_range(pos, square_bracket_multiplier)

            if len(res) == 0:
                res = [["", 1.0]]

            # merge runs of identical weights
            i = 0
            while i + 1 < len(res):
                if (
                    res[i][1] == res[i + 1][1]
                    and res[i][0].strip() != "BREAK"
                    and res[i + 1][0].strip() != "BREAK"
                ):
                    res[i][0] += res[i + 1][0]
                    res.pop(i + 1)
                else:
                    i += 1

            return res

        for text in prompt:
            texts_and_weights = parse_prompt_attention(text)
            text_token = []
            text_weight = []
            for word, weight in texts_and_weights:
                if word.strip() == "BREAK":
                    # pad until next multiple of tokenizer's max token length
                    pad_len = tokenizer.model_max_length - (
                        len(text_token) % tokenizer.model_max_length
                    )
                    print(f"BREAK pad_len: {pad_len}")
                    for i in range(pad_len):
                        # v2のときEOSをつけるべきかどうかわからないぜ
                        # if i == 0:
                        #     text_token.append(tokenizer.eos_token_id)
                        # else:
                        text_token.append(tokenizer.pad_token_id)
                        text_weight.append(1.0)
                    continue

                # tokenize and discard the starting and the ending token
                token = tokenizer(word).input_ids[1:-1]

                token = token_replacer(token)  # for Textual Inversion

                text_token += token
                # copy the weight by length of token
                text_weight += [weight] * len(token)
                # stop if the text is too long (longer than truncation limit)
                if len(text_token) > max_length:
                    truncated = True
                    break
            # truncate
            if len(text_token) > max_length:
                truncated = True
                text_token = text_token[:max_length]
                text_weight = text_weight[:max_length]
            tokens.append(text_token)
            weights.append(text_weight)
        if truncated:
            print(
                "warning: Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples"
            )
        return tokens, weights

    def pad_tokens_and_weights(
        self,
        tokens,
        weights,
        max_length,
        bos,
        eos,
        pad,
        no_boseos_middle=True,
        chunk_length=77,
    ):
        r"""
        Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
        """
        max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
        weights_length = (
            max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
        )
        for i in range(len(tokens)):
            tokens[i] = (
                [bos] + tokens[i] + [eos] + [pad] * (max_length - 2 - len(tokens[i]))
            )
            if no_boseos_middle:
                weights[i] = (
                    [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
                )
            else:
                w = []
                if len(weights[i]) == 0:
                    w = [1.0] * weights_length
                else:
                    for j in range(max_embeddings_multiples):
                        # weight for starting token in this chunk
                        w.append(1.0)
                        w += weights[i][
                            j
                            * (chunk_length - 2) : min(
                                len(weights[i]), (j + 1) * (chunk_length - 2)
                            )
                        ]
                        w.append(1.0)  # weight for ending token in this chunk
                    w += [1.0] * (weights_length - len(w))
                weights[i] = w[:]

        return tokens, weights

    def get_unweighted_text_embeddings(
        self,
        text_encoder: CLIPTextModel,
        text_input: torch.Tensor,
        chunk_length: int,
        clip_skip: int,
        eos: int,
        pad: int,
        no_boseos_middle: Optional[bool] = True,
    ):
        """
        When the length of tokens is a multiple of the capacity of the text encoder,
        it should be split into chunks and sent to the text encoder individually.
        """
        max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
        if max_embeddings_multiples > 1:
            text_embeddings = []
            pool = None
            for i in range(max_embeddings_multiples):
                # extract the i-th chunk
                text_input_chunk = text_input[
                    :, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2
                ].clone()

                # cover the head and the tail by the starting and the ending tokens
                text_input_chunk[:, 0] = text_input[0, 0]
                if pad == eos:  # v1
                    text_input_chunk[:, -1] = text_input[0, -1]
                else:  # v2
                    for j in range(len(text_input_chunk)):
                        # 最後に普通の文字がある
                        if (
                            text_input_chunk[j, -1] != eos
                            and text_input_chunk[j, -1] != pad
                        ):
                            text_input_chunk[j, -1] = eos
                        if text_input_chunk[j, 1] == pad:  # BOSだけであとはPAD
                            text_input_chunk[j, 1] = eos

                # -2 is same for Text Encoder 1 and 2
                enc_out = text_encoder(
                    text_input_chunk, output_hidden_states=True, return_dict=True
                )
                text_embedding = enc_out["hidden_states"][-2]
                if pool is None:
                    # use 1st chunk, if provided
                    pool = enc_out.get("text_embeds", None)
                    if pool is not None:
                        pool = train_util.pool_workaround(
                            text_encoder,
                            enc_out["last_hidden_state"],
                            text_input_chunk,
                            eos,
                        )

                if no_boseos_middle:
                    if i == 0:
                        # discard the ending token
                        text_embedding = text_embedding[:, :-1]
                    elif i == max_embeddings_multiples - 1:
                        # discard the starting token
                        text_embedding = text_embedding[:, 1:]
                    else:
                        # discard both starting and ending tokens
                        text_embedding = text_embedding[:, 1:-1]

                text_embeddings.append(text_embedding)
            text_embeddings = torch.concat(text_embeddings, axis=1)
        else:
            enc_out = text_encoder(
                text_input, output_hidden_states=True, return_dict=True
            )
            text_embeddings = enc_out["hidden_states"][-2]
            # text encoder 1 doesn't return this
            pool = enc_out.get("text_embeds", None)
            if pool is not None:
                pool = train_util.pool_workaround(
                    text_encoder, enc_out["last_hidden_state"], text_input, eos
                )
        return text_embeddings, pool

    def get_weighted_text_embeddings(
        self,
        tokenizer: CLIPTokenizer,
        text_encoder: CLIPTextModel,
        prompt: Union[str, List[str]],
        uncond_prompt: Optional[Union[str, List[str]]] = None,
        max_embeddings_multiples: Optional[int] = 1,
        no_boseos_middle: Optional[bool] = False,
        skip_parsing: Optional[bool] = False,
        skip_weighting: Optional[bool] = False,
        clip_skip=None,
        token_replacer=None,
        device=None,
        **kwargs,
    ):
        max_length = (tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
        if isinstance(prompt, str):
            prompt = [prompt]

        # split the prompts with "AND". each prompt must have the same number of splits
        new_prompts = []
        for p in prompt:
            new_prompts.extend(p.split(" AND "))
        prompt = new_prompts

        if not skip_parsing:
            prompt_tokens, prompt_weights = self.get_prompts_with_weights(
                tokenizer, token_replacer, prompt, max_length - 2
            )
            if uncond_prompt is not None:
                if isinstance(uncond_prompt, str):
                    uncond_prompt = [uncond_prompt]
                uncond_tokens, uncond_weights = self.get_prompts_with_weights(
                    tokenizer, token_replacer, uncond_prompt, max_length - 2
                )
        else:
            prompt_tokens = [
                token[1:-1]
                for token in tokenizer(
                    prompt, max_length=max_length, truncation=True
                ).input_ids
            ]
            prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
            if uncond_prompt is not None:
                if isinstance(uncond_prompt, str):
                    uncond_prompt = [uncond_prompt]
                uncond_tokens = [
                    token[1:-1]
                    for token in tokenizer(
                        uncond_prompt, max_length=max_length, truncation=True
                    ).input_ids
                ]
                uncond_weights = [[1.0] * len(token) for token in uncond_tokens]

        # round up the longest length of tokens to a multiple of (model_max_length - 2)
        max_length = max([len(token) for token in prompt_tokens])
        if uncond_prompt is not None:
            max_length = max(max_length, max([len(token) for token in uncond_tokens]))

        max_embeddings_multiples = min(
            max_embeddings_multiples,
            (max_length - 1) // (tokenizer.model_max_length - 2) + 1,
        )
        max_embeddings_multiples = max(1, max_embeddings_multiples)
        max_length = (tokenizer.model_max_length - 2) * max_embeddings_multiples + 2

        # pad the length of tokens and weights
        bos = tokenizer.bos_token_id
        eos = tokenizer.eos_token_id
        pad = tokenizer.pad_token_id
        prompt_tokens, prompt_weights = self.pad_tokens_and_weights(
            prompt_tokens,
            prompt_weights,
            max_length,
            bos,
            eos,
            pad,
            no_boseos_middle=no_boseos_middle,
            chunk_length=tokenizer.model_max_length,
        )
        prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=device)
        if uncond_prompt is not None:
            uncond_tokens, uncond_weights = self.pad_tokens_and_weights(
                uncond_tokens,
                uncond_weights,
                max_length,
                bos,
                eos,
                pad,
                no_boseos_middle=no_boseos_middle,
                chunk_length=tokenizer.model_max_length,
            )
            uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device)

        # get the embeddings
        text_embeddings, text_pool = self.get_unweighted_text_embeddings(
            text_encoder,
            prompt_tokens,
            tokenizer.model_max_length,
            clip_skip,
            eos,
            pad,
            no_boseos_middle=no_boseos_middle,
        )
        prompt_weights = torch.tensor(
            prompt_weights, dtype=text_embeddings.dtype, device=device
        )
        if uncond_prompt is not None:
            uncond_embeddings, uncond_pool = self.get_unweighted_text_embeddings(
                text_encoder,
                uncond_tokens,
                tokenizer.model_max_length,
                clip_skip,
                eos,
                pad,
                no_boseos_middle=no_boseos_middle,
            )
            uncond_weights = torch.tensor(
                uncond_weights, dtype=uncond_embeddings.dtype, device=device
            )

        # assign weights to the prompts and normalize in the sense of mean
        # TODO: should we normalize by chunk or in a whole (current implementation)?
        # →全体でいいんじゃないかな
        if (not skip_parsing) and (not skip_weighting):
            previous_mean = (
                text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
            )
            text_embeddings *= prompt_weights.unsqueeze(-1)
            current_mean = (
                text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
            )
            text_embeddings *= (
                (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
            )
            if uncond_prompt is not None:
                previous_mean = (
                    uncond_embeddings.float()
                    .mean(axis=[-2, -1])
                    .to(uncond_embeddings.dtype)
                )
                uncond_embeddings *= uncond_weights.unsqueeze(-1)
                current_mean = (
                    uncond_embeddings.float()
                    .mean(axis=[-2, -1])
                    .to(uncond_embeddings.dtype)
                )
                uncond_embeddings *= (
                    (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
                )

        if uncond_prompt is not None:
            return (
                text_embeddings,
                text_pool,
                uncond_embeddings,
                uncond_pool,
                prompt_tokens,
            )
        return text_embeddings, text_pool, None, None, prompt_tokens

    def get_token_replacer(self, tokenizer):
        tokenizer_index = self.tokenizers.index(tokenizer)
        token_replacements = self.token_replacements_list[tokenizer_index]

        def replace_tokens(tokens):
            # print("replace_tokens", tokens, "=>", token_replacements)
            if isinstance(tokens, torch.Tensor):
                tokens = tokens.tolist()

            new_tokens = []
            for token in tokens:
                if token in token_replacements:
                    replacement = token_replacements[token]
                    new_tokens.extend(replacement)
                else:
                    new_tokens.append(token)
            return new_tokens

        return replace_tokens

    def set_control_nets(self, ctrl_nets):
        self.control_nets = ctrl_nets

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        init_image: Union[
            torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]
        ] = None,
        mask_image: Union[
            torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]
        ] = None,
        height: int = 1024,
        width: int = 1024,
        original_height: int = None,
        original_width: int = None,
        original_height_negative: int = None,
        original_width_negative: int = None,
        crop_top: int = 0,
        crop_left: int = 0,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_scale: float = None,
        strength: float = 0.8,
        # num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        vae_batch_size: float = None,
        return_latents: bool = False,
        # return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
        callback_steps: Optional[int] = 1,
        img2img_noise=None,
        clip_guide_images=None,
        **kwargs,
    ):
        # TODO support secondary prompt
        num_images_per_prompt = 1  # fixed because already prompt is repeated

        if isinstance(prompt, str):
            batch_size = 1
            prompt = [prompt]
        elif isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
            )
        reginonal_network = " AND " in prompt[0]

        vae_batch_size = (
            batch_size
            if vae_batch_size is None
            else (
                int(vae_batch_size)
                if vae_batch_size >= 1
                else max(1, int(batch_size * vae_batch_size))
            )
        )

        if strength < 0 or strength > 1:
            raise ValueError(
                f"The value of strength should in [0.0, 1.0] but is {strength}"
            )

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
            )

        if (callback_steps is None) or (
            callback_steps is not None
            and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        # get prompt text embeddings

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        if not do_classifier_free_guidance and negative_scale is not None:
            print(f"negative_scale is ignored if guidance scalle <= 1.0")
            negative_scale = None

        # get unconditional embeddings for classifier free guidance
        if negative_prompt is None:
            negative_prompt = [""] * batch_size
        elif isinstance(negative_prompt, str):
            negative_prompt = [negative_prompt] * batch_size
        if batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )

        tes_text_embs = []
        tes_uncond_embs = []
        tes_real_uncond_embs = []

        for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
            token_replacer = self.get_token_replacer(tokenizer)

            # use last text_pool, because it is from text encoder 2
            (
                text_embeddings,
                text_pool,
                uncond_embeddings,
                uncond_pool,
                _,
            ) = self.get_weighted_text_embeddings(
                tokenizer,
                text_encoder,
                prompt=prompt,
                uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
                max_embeddings_multiples=max_embeddings_multiples,
                clip_skip=self.clip_skip,
                token_replacer=token_replacer,
                device=self.device,
                **kwargs,
            )
            tes_text_embs.append(text_embeddings)
            tes_uncond_embs.append(uncond_embeddings)

            if negative_scale is not None:
                _, real_uncond_embeddings, _ = self.get_weighted_text_embeddings(
                    token_replacer,
                    prompt=prompt,  # こちらのトークン長に合わせてuncondを作るので75トークン超で必須
                    uncond_prompt=[""] * batch_size,
                    max_embeddings_multiples=max_embeddings_multiples,
                    clip_skip=self.clip_skip,
                    token_replacer=token_replacer,
                    device=self.device,
                    **kwargs,
                )
                tes_real_uncond_embs.append(real_uncond_embeddings)

        # concat text encoder outputs
        text_embeddings = tes_text_embs[0]
        uncond_embeddings = tes_uncond_embs[0]
        for i in range(1, len(tes_text_embs)):
            text_embeddings = torch.cat(
                [text_embeddings, tes_text_embs[i]], dim=2
            )  # n,77,2048
            if do_classifier_free_guidance:
                uncond_embeddings = torch.cat(
                    [uncond_embeddings, tes_uncond_embs[i]], dim=2
                )  # n,77,2048

        if do_classifier_free_guidance:
            if negative_scale is None:
                text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
            else:
                text_embeddings = torch.cat(
                    [uncond_embeddings, text_embeddings, real_uncond_embeddings]
                )

        if self.control_nets:
            # ControlNetのhintにguide imageを流用する
            if isinstance(clip_guide_images, PIL.Image.Image):
                clip_guide_images = [clip_guide_images]
            if isinstance(clip_guide_images[0], PIL.Image.Image):
                clip_guide_images = [
                    self.preprocess_image(im) for im in clip_guide_images
                ]
                clip_guide_images = torch.cat(clip_guide_images)
            if isinstance(clip_guide_images, list):
                clip_guide_images = torch.stack(clip_guide_images)

            clip_guide_images = clip_guide_images.to(
                self.device, dtype=text_embeddings.dtype
            )

        # create size embs
        if original_height is None:
            original_height = height
        if original_width is None:
            original_width = width
        if original_height_negative is None:
            original_height_negative = original_height
        if original_width_negative is None:
            original_width_negative = original_width
        if crop_top is None:
            crop_top = 0
        if crop_left is None:
            crop_left = 0
        emb1 = sdxl_train_util.get_timestep_embedding(
            torch.FloatTensor([original_height, original_width]).unsqueeze(0), 256
        )
        uc_emb1 = sdxl_train_util.get_timestep_embedding(
            torch.FloatTensor(
                [original_height_negative, original_width_negative]
            ).unsqueeze(0),
            256,
        )
        emb2 = sdxl_train_util.get_timestep_embedding(
            torch.FloatTensor([crop_top, crop_left]).unsqueeze(0), 256
        )
        emb3 = sdxl_train_util.get_timestep_embedding(
            torch.FloatTensor([height, width]).unsqueeze(0), 256
        )
        c_vector = (
            torch.cat([emb1, emb2, emb3], dim=1)
            .to(self.device, dtype=text_embeddings.dtype)
            .repeat(batch_size, 1)
        )
        uc_vector = (
            torch.cat([uc_emb1, emb2, emb3], dim=1)
            .to(self.device, dtype=text_embeddings.dtype)
            .repeat(batch_size, 1)
        )

        if reginonal_network:
            # use last pool for conditioning
            num_sub_prompts = len(text_pool) // batch_size
            text_pool = text_pool[
                num_sub_prompts - 1 :: num_sub_prompts
            ]  # last subprompt

        if init_image is not None and self.clip_vision_model is not None:
            print(
                f"encode by clip_vision_model and apply clip_vision_strength={self.clip_vision_strength}"
            )
            vision_input = self.clip_vision_processor(
                init_image, return_tensors="pt", device=self.device
            )
            pixel_values = vision_input["pixel_values"].to(
                self.device, dtype=text_embeddings.dtype
            )

            clip_vision_embeddings = self.clip_vision_model(
                pixel_values=pixel_values, output_hidden_states=True, return_dict=True
            )
            clip_vision_embeddings = clip_vision_embeddings.image_embeds

            if len(clip_vision_embeddings) == 1 and batch_size > 1:
                clip_vision_embeddings = clip_vision_embeddings.repeat((batch_size, 1))

            clip_vision_embeddings = clip_vision_embeddings * self.clip_vision_strength
            assert (
                clip_vision_embeddings.shape == text_pool.shape
            ), f"{clip_vision_embeddings.shape} != {text_pool.shape}"
            text_pool = clip_vision_embeddings  # replace: same as ComfyUI (?)

        c_vector = torch.cat([text_pool, c_vector], dim=1)
        if do_classifier_free_guidance:
            uc_vector = torch.cat([uncond_pool, uc_vector], dim=1)
            vector_embeddings = torch.cat([uc_vector, c_vector])
        else:
            vector_embeddings = c_vector

        # set timesteps
        self.scheduler.set_timesteps(num_inference_steps, self.device)

        latents_dtype = text_embeddings.dtype
        init_latents_orig = None
        mask = None

        if init_image is None:
            # get the initial random noise unless the user supplied it

            # Unlike in other pipelines, latents need to be generated in the target device
            # for 1-to-1 results reproducibility with the CompVis implementation.
            # However this currently doesn't work in `mps`.
            latents_shape = (
                batch_size * num_images_per_prompt,
                self.unet.in_channels,
                height // 8,
                width // 8,
            )

            if latents is None:
                if self.device.type == "mps":
                    # randn does not exist on mps
                    latents = torch.randn(
                        latents_shape,
                        generator=generator,
                        device="cpu",
                        dtype=latents_dtype,
                    ).to(self.device)
                else:
                    latents = torch.randn(
                        latents_shape,
                        generator=generator,
                        device=self.device,
                        dtype=latents_dtype,
                    )
            else:
                if latents.shape != latents_shape:
                    raise ValueError(
                        f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}"
                    )
                latents = latents.to(self.device)

            timesteps = self.scheduler.timesteps.to(self.device)

            # scale the initial noise by the standard deviation required by the scheduler
            latents = latents * self.scheduler.init_noise_sigma
        else:
            # image to tensor
            if isinstance(init_image, PIL.Image.Image):
                init_image = [init_image]
            if isinstance(init_image[0], PIL.Image.Image):
                init_image = [self.preprocess_image(im) for im in init_image]
                init_image = torch.cat(init_image)
            if isinstance(init_image, list):
                init_image = torch.stack(init_image)

            # mask image to tensor
            if mask_image is not None:
                if isinstance(mask_image, PIL.Image.Image):
                    mask_image = [mask_image]
                if isinstance(mask_image[0], PIL.Image.Image):
                    mask_image = torch.cat(
                        [self.preprocess_mask(im) for im in mask_image]
                    )  # H*W, 0 for repaint

            # encode the init image into latents and scale the latents
            init_image = init_image.to(device=self.device, dtype=latents_dtype)
            if init_image.size()[-2:] == (height // 8, width // 8):
                init_latents = init_image
            else:
                if vae_batch_size >= batch_size:
                    init_latent_dist = self.vae.encode(
                        init_image.to(self.vae.dtype)
                    ).latent_dist
                    init_latents = init_latent_dist.sample(generator=generator)
                else:
                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()
                    init_latents = []
                    for i in tqdm(
                        range(0, min(batch_size, len(init_image)), vae_batch_size)
                    ):
                        init_latent_dist = self.vae.encode(
                            (
                                init_image[i : i + vae_batch_size]
                                if vae_batch_size > 1
                                else init_image[i].unsqueeze(0)
                            ).to(self.vae.dtype)
                        ).latent_dist
                        init_latents.append(
                            init_latent_dist.sample(generator=generator)
                        )
                    init_latents = torch.cat(init_latents)

                init_latents = sdxl_model_util.VAE_SCALE_FACTOR * init_latents

            if len(init_latents) == 1:
                init_latents = init_latents.repeat((batch_size, 1, 1, 1))
            init_latents_orig = init_latents

            # preprocess mask
            if mask_image is not None:
                mask = mask_image.to(device=self.device, dtype=latents_dtype)
                if len(mask) == 1:
                    mask = mask.repeat((batch_size, 1, 1, 1))

                # check sizes
                if not mask.shape == init_latents.shape:
                    raise ValueError("The mask and init_image should be the same size!")

            # get the original timestep using init_timestep
            offset = self.scheduler.config.get("steps_offset", 0)
            init_timestep = int(num_inference_steps * strength) + offset
            init_timestep = min(init_timestep, num_inference_steps)

            timesteps = self.scheduler.timesteps[-init_timestep]
            timesteps = torch.tensor(
                [timesteps] * batch_size * num_images_per_prompt, device=self.device
            )

            # add noise to latents using the timesteps
            latents = self.scheduler.add_noise(init_latents, img2img_noise, timesteps)

            t_start = max(num_inference_steps - init_timestep + offset, 0)
            timesteps = self.scheduler.timesteps[t_start:].to(self.device)

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        num_latent_input = (
            (3 if negative_scale is not None else 2)
            if do_classifier_free_guidance
            else 1
        )

        if self.control_nets:
            # guided_hints = original_control_net.get_guided_hints(self.control_nets, num_latent_input, batch_size, clip_guide_images)
            if self.control_net_enabled:
                for control_net, _ in self.control_nets:
                    with torch.no_grad():
                        control_net.set_cond_image(clip_guide_images)
            else:
                for control_net, _ in self.control_nets:
                    control_net.set_cond_image(None)

        each_control_net_enabled = [self.control_net_enabled] * len(self.control_nets)
        for i, t in enumerate(tqdm(timesteps)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = latents.repeat((num_latent_input, 1, 1, 1))
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # disable control net if ratio is set
            if self.control_nets and self.control_net_enabled:
                for j, ((control_net, ratio), enabled) in enumerate(
                    zip(self.control_nets, each_control_net_enabled)
                ):
                    if not enabled or ratio >= 1.0:
                        continue
                    if ratio < i / len(timesteps):
                        print(
                            f"ControlNet {j} is disabled (ratio={ratio} at {i} / {len(timesteps)})"
                        )
                        control_net.set_cond_image(None)
                        each_control_net_enabled[j] = False

            # predict the noise residual
            # TODO Diffusers' ControlNet
            # if self.control_nets and self.control_net_enabled:
            #     if reginonal_network:
            #         num_sub_and_neg_prompts = len(text_embeddings) // batch_size
            #         text_emb_last = text_embeddings[num_sub_and_neg_prompts - 2 :: num_sub_and_neg_prompts]  # last subprompt
            #     else:
            #         text_emb_last = text_embeddings

            #     # not working yet
            #     noise_pred = original_control_net.call_unet_and_control_net(
            #         i,
            #         num_latent_input,
            #         self.unet,
            #         self.control_nets,
            #         guided_hints,
            #         i / len(timesteps),
            #         latent_model_input,
            #         t,
            #         text_emb_last,
            #     ).sample
            # else:
            noise_pred = self.unet(
                latent_model_input, t, text_embeddings, vector_embeddings
            )

            # perform guidance
            if do_classifier_free_guidance:
                if negative_scale is None:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(
                        num_latent_input
                    )  # uncond by negative prompt
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )
                else:
                    (
                        noise_pred_negative,
                        noise_pred_text,
                        noise_pred_uncond,
                    ) = noise_pred.chunk(
                        num_latent_input
                    )  # uncond is real uncond
                    noise_pred = (
                        noise_pred_uncond
                        + guidance_scale * (noise_pred_text - noise_pred_uncond)
                        - negative_scale * (noise_pred_negative - noise_pred_uncond)
                    )

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(
                noise_pred, t, latents, **extra_step_kwargs
            ).prev_sample

            if mask is not None:
                # masking
                init_latents_proper = self.scheduler.add_noise(
                    init_latents_orig, img2img_noise, torch.tensor([t])
                )
                latents = (init_latents_proper * mask) + (latents * (1 - mask))

            # call the callback, if provided
            if i % callback_steps == 0:
                if callback is not None:
                    callback(i, t, latents)
                if is_cancelled_callback is not None and is_cancelled_callback():
                    return None

        if return_latents:
            return latents

        latents = 1 / sdxl_model_util.VAE_SCALE_FACTOR * latents
        if vae_batch_size >= batch_size:
            image = self.vae.decode(latents.to(self.vae.dtype)).sample
        else:
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            images = []
            for i in tqdm(range(0, batch_size, vae_batch_size)):
                images.append(
                    self.vae.decode(
                        (
                            latents[i : i + vae_batch_size]
                            if vae_batch_size > 1
                            else latents[i].unsqueeze(0)
                        ).to(self.vae.dtype)
                    ).sample
                )
            image = torch.cat(images)

        image = (image / 2 + 0.5).clamp(0, 1)

        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        if output_type == "pil":
            # image = self.numpy_to_pil(image)
            image = (image * 255).round().astype("uint8")
            image = [Image.fromarray(im) for im in image]

        return image


class SDXLLLiteImg2ImgPipeline:
    def __init__(self):
        self.SCHEDULER_LINEAR_START = 0.00085
        self.SCHEDULER_LINEAR_END = 0.0120
        self.SCHEDULER_TIMESTEPS = 1000
        self.SCHEDLER_SCHEDULE = "scaled_linear"
        self.LATENT_CHANNELS = 4
        self.DOWNSAMPLING_FACTOR = 8

    def replace_unet_modules(
        self,
        unet: diffusers.models.unet_2d_condition.UNet2DConditionModel,
        mem_eff_attn,
        xformers,
        sdpa,
    ):
        if mem_eff_attn:
            print("Enable memory efficient attention for U-Net")

            # これはDiffusersのU-Netではなく自前のU-Netなので置き換えなくても良い
            unet.set_use_memory_efficient_attention(False, True)
        elif xformers:
            print("Enable xformers for U-Net")
            try:
                import xformers.ops
            except ImportError:
                raise ImportError("No xformers / xformersがインストールされていないようです")

            unet.set_use_memory_efficient_attention(True, False)
        elif sdpa:
            print("Enable SDPA for U-Net")
            unet.set_use_memory_efficient_attention(False, False)
            unet.set_use_sdpa(True)

    # TODO common train_util.py
    def replace_vae_modules(
        self, vae: diffusers.models.AutoencoderKL, mem_eff_attn, xformers, sdpa
    ):
        if mem_eff_attn:
            self.replace_vae_attn_to_memory_efficient()
        elif xformers:
            # replace_vae_attn_to_xformers() # 解像度によってxformersがエラーを出す?
            vae.set_use_memory_efficient_attention_xformers(True)  # とりあえずこっちを使う
        elif sdpa:
            self.replace_vae_attn_to_sdpa()

    def replace_vae_attn_to_memory_efficient(self):
        print(
            "VAE Attention.forward has been replaced to FlashAttention (not xformers)"
        )
        flash_func = FlashAttentionFunction

        def forward_flash_attn(self, hidden_states, **kwargs):
            q_bucket_size = 512
            k_bucket_size = 1024

            residual = hidden_states
            batch, channel, height, width = hidden_states.shape

            # norm
            hidden_states = self.group_norm(hidden_states)

            hidden_states = hidden_states.view(
                batch, channel, height * width
            ).transpose(1, 2)

            # proj to q, k, v
            query_proj = self.to_q(hidden_states)
            key_proj = self.to_k(hidden_states)
            value_proj = self.to_v(hidden_states)

            query_proj, key_proj, value_proj = map(
                lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads),
                (query_proj, key_proj, value_proj),
            )

            out = flash_func.apply(
                query_proj,
                key_proj,
                value_proj,
                None,
                False,
                q_bucket_size,
                k_bucket_size,
            )

            out = rearrange(out, "b h n d -> b n (h d)")

            # compute next hidden_states
            # linear proj
            hidden_states = self.to_out[0](hidden_states)
            # dropout
            hidden_states = self.to_out[1](hidden_states)

            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch, channel, height, width
            )

            # res connect and rescale
            hidden_states = (hidden_states + residual) / self.rescale_output_factor
            return hidden_states

        def forward_flash_attn_0_14(self, hidden_states, **kwargs):
            if not hasattr(self, "to_q"):
                self.to_q = self.query
                self.to_k = self.key
                self.to_v = self.value
                self.to_out = [self.proj_attn, torch.nn.Identity()]
                self.heads = self.num_heads
            return forward_flash_attn(self, hidden_states, **kwargs)

        if diffusers.__version__ < "0.15.0":
            diffusers.models.attention.AttentionBlock.forward = forward_flash_attn_0_14
        else:
            diffusers.models.attention_processor.Attention.forward = forward_flash_attn

    def replace_vae_attn_to_xformers(self):
        print("VAE: Attention.forward has been replaced to xformers")
        import xformers.ops

        def forward_xformers(self, hidden_states, **kwargs):
            residual = hidden_states
            batch, channel, height, width = hidden_states.shape

            # norm
            hidden_states = self.group_norm(hidden_states)

            hidden_states = hidden_states.view(
                batch, channel, height * width
            ).transpose(1, 2)

            # proj to q, k, v
            query_proj = self.to_q(hidden_states)
            key_proj = self.to_k(hidden_states)
            value_proj = self.to_v(hidden_states)

            query_proj, key_proj, value_proj = map(
                lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads),
                (query_proj, key_proj, value_proj),
            )

            query_proj = query_proj.contiguous()
            key_proj = key_proj.contiguous()
            value_proj = value_proj.contiguous()
            out = xformers.ops.memory_efficient_attention(
                query_proj, key_proj, value_proj, attn_bias=None
            )

            out = rearrange(out, "b h n d -> b n (h d)")

            # compute next hidden_states
            # linear proj
            hidden_states = self.to_out[0](hidden_states)
            # dropout
            hidden_states = self.to_out[1](hidden_states)

            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch, channel, height, width
            )

            # res connect and rescale
            hidden_states = (hidden_states + residual) / self.rescale_output_factor
            return hidden_states

        def forward_xformers_0_14(self, hidden_states, **kwargs):
            if not hasattr(self, "to_q"):
                self.to_q = self.query
                self.to_k = self.key
                self.to_v = self.value
                self.to_out = [self.proj_attn, torch.nn.Identity()]
                self.heads = self.num_heads
            return forward_xformers(self, hidden_states, **kwargs)

        if diffusers.__version__ < "0.15.0":
            diffusers.models.attention.AttentionBlock.forward = forward_xformers_0_14
        else:
            diffusers.models.attention_processor.Attention.forward = forward_xformers

    def replace_vae_attn_to_sdpa():
        print("VAE: Attention.forward has been replaced to sdpa")

        def forward_sdpa(self, hidden_states, **kwargs):
            residual = hidden_states
            batch, channel, height, width = hidden_states.shape

            # norm
            hidden_states = self.group_norm(hidden_states)

            hidden_states = hidden_states.view(
                batch, channel, height * width
            ).transpose(1, 2)

            # proj to q, k, v
            query_proj = self.to_q(hidden_states)
            key_proj = self.to_k(hidden_states)
            value_proj = self.to_v(hidden_states)

            query_proj, key_proj, value_proj = map(
                lambda t: rearrange(t, "b n (h d) -> b n h d", h=self.heads),
                (query_proj, key_proj, value_proj),
            )

            out = torch.nn.functional.scaled_dot_product_attention(
                query_proj,
                key_proj,
                value_proj,
                attn_mask=None,
                dropout_p=0.0,
                is_causal=False,
            )

            out = rearrange(out, "b n h d -> b n (h d)")

            # compute next hidden_states
            # linear proj
            hidden_states = self.to_out[0](hidden_states)
            # dropout
            hidden_states = self.to_out[1](hidden_states)

            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch, channel, height, width
            )

            # res connect and rescale
            hidden_states = (hidden_states + residual) / self.rescale_output_factor
            return hidden_states

        def forward_sdpa_0_14(self, hidden_states, **kwargs):
            if not hasattr(self, "to_q"):
                self.to_q = self.query
                self.to_k = self.key
                self.to_v = self.value
                self.to_out = [self.proj_attn, torch.nn.Identity()]
                self.heads = self.num_heads
            return forward_sdpa(self, hidden_states, **kwargs)

        if diffusers.__version__ < "0.15.0":
            diffusers.models.attention.AttentionBlock.forward = forward_sdpa_0_14
        else:
            diffusers.models.attention_processor.Attention.forward = forward_sdpa

    def load(self, pipeline: AbstractPipeline, controlnet_urls: Optional[List[str]]):
        pipeline.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
        pipeline.pipe.fuse_lora()

        self.dtype = pipeline.pipe.dtype
        self.device = pipeline.pipe.device
        state_dict = sdxl_model_util.convert_diffusers_unet_state_dict_to_sdxl(
            pipeline.pipe.unet.state_dict()
        )
        with init_empty_weights():
            original_unet = (
                sdxl_original_unet.SdxlUNet2DConditionModel()
            )  # overwrite unet
        sdxl_model_util._load_state_dict_on_device(
            original_unet,
            state_dict,
            device=pipeline.pipe.device,
            dtype=pipeline.pipe.dtype,
        )
        unet: InferSdxlUNet2DConditionModel = InferSdxlUNet2DConditionModel(
            original_unet
        )
        sched_init_args = {}
        has_steps_offset = True
        has_clip_sample = True
        scheduler_num_noises_per_step = 1

        mem_eff = not (True or False)
        self.replace_unet_modules(unet, mem_eff, True, False)
        self.replace_vae_modules(pipeline.pipe.vae, mem_eff, True, False)

        scheduler_cls = LCMScheduler
        scheduler_module = diffusers.schedulers.scheduling_ddim

        if has_steps_offset:
            sched_init_args["steps_offset"] = 1
        if has_clip_sample:
            sched_init_args["clip_sample"] = False

        class NoiseManager:
            def __init__(self):
                self.sampler_noises = None
                self.sampler_noise_index = 0

            def reset_sampler_noises(self, noises):
                self.sampler_noise_index = 0
                self.sampler_noises = noises

            def randn(
                self, shape, device=None, dtype=None, layout=None, generator=None
            ):
                # print("replacing", shape, len(self.sampler_noises), self.sampler_noise_index)
                if self.sampler_noises is not None and self.sampler_noise_index < len(
                    self.sampler_noises
                ):
                    noise = self.sampler_noises[self.sampler_noise_index]
                    if shape != noise.shape:
                        noise = None
                else:
                    noise = None

                if noise == None:
                    print(
                        f"unexpected noise request: {self.sampler_noise_index}, {shape}"
                    )
                    noise = torch.randn(
                        shape, dtype=dtype, device=device, generator=generator
                    )

                self.sampler_noise_index += 1
                return noise

        class TorchRandReplacer:
            def __init__(self, noise_manager):
                self.noise_manager = noise_manager

            def __getattr__(self, item):
                if item == "randn":
                    return self.noise_manager.randn
                if hasattr(torch, item):
                    return getattr(torch, item)
                raise AttributeError(
                    "'{}' object has no attribute '{}'".format(
                        type(self).__name__, item
                    )
                )

        noise_manager = NoiseManager()
        if scheduler_module is not None:
            scheduler_module.torch = TorchRandReplacer(noise_manager)

        scheduler = scheduler_cls(
            num_train_timesteps=self.SCHEDULER_TIMESTEPS,
            beta_start=self.SCHEDULER_LINEAR_START,
            beta_end=self.SCHEDULER_LINEAR_END,
            beta_schedule=self.SCHEDLER_SCHEDULE,
            **sched_init_args,
        )
        device = torch.device(
            pipeline.pipe.device if torch.cuda.is_available() else "cpu"
        )
        # vae.to(vae_dtype).to(device)
        # vae.eval()
        # text_encoder1.to(dtype).to(device)
        # text_encoder2.to(dtype).to(device)
        print(pipeline.pipe.dtype)
        unet.to(pipeline.pipe.dtype).to(pipeline.pipe.device)
        # text_encoder1.eval()
        # text_encoder2.eval()
        unet.eval()
        control_nets: List[Tuple[ControlNetLLLite, float]] = []
        for link in controlnet_urls:
            net_path = Path.home() / ".cache" / link.split("/")[-1]
            download_file(link, net_path)
            print(f"loading controlnet {net_path}")
            state_dict = load_file(net_path)
            mlp_dim = None
            cond_emb_dim = None
            for key, value in state_dict.items():
                if mlp_dim is None and "down.0.weight" in key:
                    mlp_dim = value.shape[0]
                elif cond_emb_dim is None and "conditioning1.0" in key:
                    cond_emb_dim = value.shape[0] * 2
                if mlp_dim is not None and cond_emb_dim is not None:
                    break
            assert (
                mlp_dim is not None and cond_emb_dim is not None
            ), f"invalid control net: {link}"

            multiplier = 0.2
            # ratio = 1.0 if not args.control_net_ratios or len(args.control_net_ratios) <= i else args.control_net_ratios[i]
            ratio = 1.0

            control_net = ControlNetLLLite(
                unet, cond_emb_dim, mlp_dim, multiplier=multiplier
            )
            control_net.apply_to()
            control_net.load_state_dict(state_dict)
            control_net.to(pipeline.pipe.dtype).to(device)
            control_net.set_batch_cond_only(False, False)
            control_nets.append((control_net, ratio))

        networks = []
        self.pipe = PipelineLike(
            device,
            pipeline.pipe.vae,
            [pipeline.pipe.text_encoder, pipeline.pipe.text_encoder_2],
            [pipeline.pipe.tokenizer, pipeline.pipe.tokenizer_2],
            unet,
            scheduler,
            2,
        )
        self.pipe.set_control_nets(control_nets)

        clear_cuda_and_gc()

        pipeline.pipe.unload_lora_weights()
        pipeline.pipe.unfuse_lora()

        clear_cuda_and_gc()

    def __call__(
        self,
        prompt: str,
        negative_prompt: str,
        seed: int,
        image: Image.Image,
        condition_image: Union[Image.Image, List[Image.Image]],
        height: int = 1024,
        width: int = 1024,
        num_inference_steps: int = 24,
        guidance_scale=1.0,
    ):
        noise_shape = (
            self.LATENT_CHANNELS,
            height // self.DOWNSAMPLING_FACTOR,
            width // self.DOWNSAMPLING_FACTOR,
        )
        i2i_noises = torch.zeros(
            (1, *noise_shape), device=self.device, dtype=self.dtype
        )
        i2i_noises[0] = torch.randn(noise_shape, device=self.device, dtype=self.dtype)
        images = self.pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            seed=seed,
            init_image=image,
            height=height,
            width=width,
            strength=1.0,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            clip_guide_images=condition_image,
            img2img_noise=i2i_noises,
        )
        return images