File size: 8,168 Bytes
a3d6c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
"""
Source url: https://github.com/OPHoperHPO/image-background-remove-tool
Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO].
License: Apache License 2.0
"""
import pathlib
from typing import Union, List, Tuple
import PIL
import cv2
import numpy as np
import torch
from PIL import Image
from carvekit.ml.arch.fba_matting.models import FBA
from carvekit.ml.arch.fba_matting.transforms import (
trimap_transform,
groupnorm_normalise_image,
)
from carvekit.ml.files.models_loc import fba_pretrained
from carvekit.utils.image_utils import convert_image, load_image
from carvekit.utils.models_utils import get_precision_autocast, cast_network
from carvekit.utils.pool_utils import batch_generator, thread_pool_processing
__all__ = ["FBAMatting"]
class FBAMatting(FBA):
"""
FBA Matting Neural Network to improve edges on image.
"""
def __init__(
self,
device="cpu",
input_tensor_size: Union[List[int], int] = 2048,
batch_size: int = 2,
encoder="resnet50_GN_WS",
load_pretrained: bool = True,
fp16: bool = False,
):
"""
Initialize the FBAMatting model
Args:
device: processing device
input_tensor_size: input image size
batch_size: the number of images that the neural network processes in one run
encoder: neural network encoder head
load_pretrained: loading pretrained model
fp16: use half precision
"""
super(FBAMatting, self).__init__(encoder=encoder)
self.fp16 = fp16
self.device = device
self.batch_size = batch_size
if isinstance(input_tensor_size, list):
self.input_image_size = input_tensor_size[:2]
else:
self.input_image_size = (input_tensor_size, input_tensor_size)
self.to(device)
if load_pretrained:
self.load_state_dict(torch.load(fba_pretrained(), map_location=self.device))
self.eval()
def data_preprocessing(
self, data: Union[PIL.Image.Image, np.ndarray]
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
"""
Transform input image to suitable data format for neural network
Args:
data: input image
Returns:
input for neural network
"""
resized = data.copy()
if self.batch_size == 1:
resized.thumbnail(self.input_image_size, resample=3)
else:
resized = resized.resize(self.input_image_size, resample=3)
# noinspection PyTypeChecker
image = np.array(resized, dtype=np.float64)
image = image / 255.0 # Normalize image to [0, 1] values range
if resized.mode == "RGB":
image = image[:, :, ::-1]
elif resized.mode == "L":
image2 = np.copy(image)
h, w = image2.shape
image = np.zeros((h, w, 2)) # Transform trimap to binary data format
image[image2 == 1, 1] = 1
image[image2 == 0, 0] = 1
else:
raise ValueError("Incorrect color mode for image")
h, w = image.shape[:2] # Scale input mlt to 8
h1 = int(np.ceil(1.0 * h / 8) * 8)
w1 = int(np.ceil(1.0 * w / 8) * 8)
x_scale = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_LANCZOS4)
image_tensor = torch.from_numpy(x_scale).permute(2, 0, 1)[None, :, :, :].float()
if resized.mode == "RGB":
return image_tensor, groupnorm_normalise_image(
image_tensor.clone(), format="nchw"
)
else:
return (
image_tensor,
torch.from_numpy(trimap_transform(x_scale))
.permute(2, 0, 1)[None, :, :, :]
.float(),
)
@staticmethod
def data_postprocessing(
data: torch.tensor, trimap: PIL.Image.Image
) -> PIL.Image.Image:
"""
Transforms output data from neural network to suitable data
format for using with other components of this framework.
Args:
data: output data from neural network
trimap: Map with the area we need to refine
Returns:
Segmentation mask as PIL Image instance
"""
if trimap.mode != "L":
raise ValueError("Incorrect color mode for trimap")
pred = data.numpy().transpose((1, 2, 0))
pred = cv2.resize(pred, trimap.size, cv2.INTER_LANCZOS4)[:, :, 0]
# noinspection PyTypeChecker
# Clean mask by removing all false predictions outside trimap and already known area
trimap_arr = np.array(trimap.copy())
pred[trimap_arr[:, :] == 0] = 0
# pred[trimap_arr[:, :] == 255] = 1
pred[pred < 0.3] = 0
return Image.fromarray(pred * 255).convert("L")
def __call__(
self,
images: List[Union[str, pathlib.Path, PIL.Image.Image]],
trimaps: List[Union[str, pathlib.Path, PIL.Image.Image]],
) -> List[PIL.Image.Image]:
"""
Passes input images though neural network and returns segmentation masks as PIL.Image.Image instances
Args:
images: input images
trimaps: Maps with the areas we need to refine
Returns:
segmentation masks as for input images, as PIL.Image.Image instances
"""
if len(images) != len(trimaps):
raise ValueError(
"Len of specified arrays of images and trimaps should be equal!"
)
collect_masks = []
autocast, dtype = get_precision_autocast(device=self.device, fp16=self.fp16)
with autocast:
cast_network(self, dtype)
for idx_batch in batch_generator(range(len(images)), self.batch_size):
inpt_images = thread_pool_processing(
lambda x: convert_image(load_image(images[x])), idx_batch
)
inpt_trimaps = thread_pool_processing(
lambda x: convert_image(load_image(trimaps[x]), mode="L"), idx_batch
)
inpt_img_batches = thread_pool_processing(
self.data_preprocessing, inpt_images
)
inpt_trimaps_batches = thread_pool_processing(
self.data_preprocessing, inpt_trimaps
)
inpt_img_batches_transformed = torch.vstack(
[i[1] for i in inpt_img_batches]
)
inpt_img_batches = torch.vstack([i[0] for i in inpt_img_batches])
inpt_trimaps_transformed = torch.vstack(
[i[1] for i in inpt_trimaps_batches]
)
inpt_trimaps_batches = torch.vstack(
[i[0] for i in inpt_trimaps_batches]
)
with torch.no_grad():
inpt_img_batches = inpt_img_batches.to(self.device)
inpt_trimaps_batches = inpt_trimaps_batches.to(self.device)
inpt_img_batches_transformed = inpt_img_batches_transformed.to(
self.device
)
inpt_trimaps_transformed = inpt_trimaps_transformed.to(self.device)
output = super(FBAMatting, self).__call__(
inpt_img_batches,
inpt_trimaps_batches,
inpt_img_batches_transformed,
inpt_trimaps_transformed,
)
output_cpu = output.cpu()
del (
inpt_img_batches,
inpt_trimaps_batches,
inpt_img_batches_transformed,
inpt_trimaps_transformed,
output,
)
masks = thread_pool_processing(
lambda x: self.data_postprocessing(output_cpu[x], inpt_trimaps[x]),
range(len(inpt_images)),
)
collect_masks += masks
return collect_masks
|