File size: 20,873 Bytes
ea5c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# cond_imageをU-Netのforwardで渡すバージョンのControlNet-LLLite検証用実装
# ControlNet-LLLite implementation for verification with cond_image passed in U-Net's forward
import os
import re
from typing import Optional, List, Type
import torch
from library import sdxl_original_unet
# input_blocksに適用するかどうか / if True, input_blocks are not applied
SKIP_INPUT_BLOCKS = False
# output_blocksに適用するかどうか / if True, output_blocks are not applied
SKIP_OUTPUT_BLOCKS = True
# conv2dに適用するかどうか / if True, conv2d are not applied
SKIP_CONV2D = False
# transformer_blocksのみに適用するかどうか。Trueの場合、ResBlockには適用されない
# if True, only transformer_blocks are applied, and ResBlocks are not applied
TRANSFORMER_ONLY = True # if True, SKIP_CONV2D is ignored because conv2d is not used in transformer_blocks
# Trueならattn1とattn2にのみ適用し、ffなどには適用しない / if True, apply only to attn1 and attn2, not to ff etc.
ATTN1_2_ONLY = True
# Trueならattn1のQKV、attn2のQにのみ適用する、ATTN1_2_ONLY指定時のみ有効 / if True, apply only to attn1 QKV and attn2 Q, only valid when ATTN1_2_ONLY is specified
ATTN_QKV_ONLY = True
# Trueならattn1やffなどにのみ適用し、attn2などには適用しない / if True, apply only to attn1 and ff, not to attn2
# ATTN1_2_ONLYと同時にTrueにできない / cannot be True at the same time as ATTN1_2_ONLY
ATTN1_ETC_ONLY = False # True
# transformer_blocksの最大インデックス。Noneなら全てのtransformer_blocksに適用
# max index of transformer_blocks. if None, apply to all transformer_blocks
TRANSFORMER_MAX_BLOCK_INDEX = None
ORIGINAL_LINEAR = torch.nn.Linear
ORIGINAL_CONV2D = torch.nn.Conv2d
def add_lllite_modules(module: torch.nn.Module, in_dim: int, depth, cond_emb_dim, mlp_dim) -> None:
# conditioning1はconditioning imageを embedding する。timestepごとに呼ばれない
# conditioning1 embeds conditioning image. it is not called for each timestep
modules = []
modules.append(ORIGINAL_CONV2D(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size
if depth == 1:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
elif depth == 2:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
elif depth == 3:
# kernel size 8は大きすぎるので、4にする / kernel size 8 is too large, so set it to 4
modules.append(torch.nn.ReLU(inplace=True))
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
modules.append(torch.nn.ReLU(inplace=True))
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
module.lllite_conditioning1 = torch.nn.Sequential(*modules)
# downで入力の次元数を削減する。LoRAにヒントを得ていることにする
# midでconditioning image embeddingと入力を結合する
# upで元の次元数に戻す
# これらはtimestepごとに呼ばれる
# reduce the number of input dimensions with down. inspired by LoRA
# combine conditioning image embedding and input with mid
# restore to the original dimension with up
# these are called for each timestep
module.lllite_down = torch.nn.Sequential(
ORIGINAL_LINEAR(in_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
module.lllite_mid = torch.nn.Sequential(
ORIGINAL_LINEAR(mlp_dim + cond_emb_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
module.lllite_up = torch.nn.Sequential(
ORIGINAL_LINEAR(mlp_dim, in_dim),
)
# Zero-Convにする / set to Zero-Conv
torch.nn.init.zeros_(module.lllite_up[0].weight) # zero conv
class LLLiteLinear(ORIGINAL_LINEAR):
def __init__(self, in_features: int, out_features: int, **kwargs):
super().__init__(in_features, out_features, **kwargs)
self.enabled = False
def set_lllite(self, depth, cond_emb_dim, name, mlp_dim, dropout=None, multiplier=1.0):
self.enabled = True
self.lllite_name = name
self.cond_emb_dim = cond_emb_dim
self.dropout = dropout
self.multiplier = multiplier # ignored
in_dim = self.in_features
add_lllite_modules(self, in_dim, depth, cond_emb_dim, mlp_dim)
self.cond_image = None
self.cond_emb = None
def set_cond_image(self, cond_image):
self.cond_image = cond_image
self.cond_emb = None
def forward(self, x):
if not self.enabled:
return super().forward(x)
if self.cond_emb is None:
self.cond_emb = self.lllite_conditioning1(self.cond_image)
cx = self.cond_emb
# reshape / b,c,h,w -> b,h*w,c
n, c, h, w = cx.shape
cx = cx.view(n, c, h * w).permute(0, 2, 1)
cx = torch.cat([cx, self.lllite_down(x)], dim=2)
cx = self.lllite_mid(cx)
if self.dropout is not None and self.training:
cx = torch.nn.functional.dropout(cx, p=self.dropout)
cx = self.lllite_up(cx) * self.multiplier
x = super().forward(x + cx) # ここで元のモジュールを呼び出す / call the original module here
return x
class LLLiteConv2d(ORIGINAL_CONV2D):
def __init__(self, in_channels: int, out_channels: int, kernel_size, **kwargs):
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
self.enabled = False
def set_lllite(self, depth, cond_emb_dim, name, mlp_dim, dropout=None, multiplier=1.0):
self.enabled = True
self.lllite_name = name
self.cond_emb_dim = cond_emb_dim
self.dropout = dropout
self.multiplier = multiplier # ignored
in_dim = self.in_channels
add_lllite_modules(self, in_dim, depth, cond_emb_dim, mlp_dim)
self.cond_image = None
self.cond_emb = None
def set_cond_image(self, cond_image):
self.cond_image = cond_image
self.cond_emb = None
def forward(self, x): # , cond_image=None):
if not self.enabled:
return super().forward(x)
if self.cond_emb is None:
self.cond_emb = self.lllite_conditioning1(self.cond_image)
cx = self.cond_emb
cx = torch.cat([cx, self.down(x)], dim=1)
cx = self.mid(cx)
if self.dropout is not None and self.training:
cx = torch.nn.functional.dropout(cx, p=self.dropout)
cx = self.up(cx) * self.multiplier
x = super().forward(x + cx) # ここで元のモジュールを呼び出す / call the original module here
return x
class SdxlUNet2DConditionModelControlNetLLLite(sdxl_original_unet.SdxlUNet2DConditionModel):
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
LLLITE_PREFIX = "lllite_unet"
def __init__(self, **kwargs):
super().__init__(**kwargs)
def apply_lllite(
self,
cond_emb_dim: int = 16,
mlp_dim: int = 16,
dropout: Optional[float] = None,
varbose: Optional[bool] = False,
multiplier: Optional[float] = 1.0,
) -> None:
def apply_to_modules(
root_module: torch.nn.Module,
target_replace_modules: List[torch.nn.Module],
) -> List[torch.nn.Module]:
prefix = "lllite_unet"
modules = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "LLLiteLinear"
is_conv2d = child_module.__class__.__name__ == "LLLiteConv2d"
if is_linear or (is_conv2d and not SKIP_CONV2D):
# block indexからdepthを計算: depthはconditioningのサイズやチャネルを計算するのに使う
# block index to depth: depth is using to calculate conditioning size and channels
block_name, index1, index2 = (name + "." + child_name).split(".")[:3]
index1 = int(index1)
if block_name == "input_blocks":
if SKIP_INPUT_BLOCKS:
continue
depth = 1 if index1 <= 2 else (2 if index1 <= 5 else 3)
elif block_name == "middle_block":
depth = 3
elif block_name == "output_blocks":
if SKIP_OUTPUT_BLOCKS:
continue
depth = 3 if index1 <= 2 else (2 if index1 <= 5 else 1)
if int(index2) >= 2:
depth -= 1
else:
raise NotImplementedError()
lllite_name = prefix + "." + name + "." + child_name
lllite_name = lllite_name.replace(".", "_")
if TRANSFORMER_MAX_BLOCK_INDEX is not None:
p = lllite_name.find("transformer_blocks")
if p >= 0:
tf_index = int(lllite_name[p:].split("_")[2])
if tf_index > TRANSFORMER_MAX_BLOCK_INDEX:
continue
# time embは適用外とする
# attn2のconditioning (CLIPからの入力) はshapeが違うので適用できない
# time emb is not applied
# attn2 conditioning (input from CLIP) cannot be applied because the shape is different
if "emb_layers" in lllite_name or (
"attn2" in lllite_name and ("to_k" in lllite_name or "to_v" in lllite_name)
):
continue
if ATTN1_2_ONLY:
if not ("attn1" in lllite_name or "attn2" in lllite_name):
continue
if ATTN_QKV_ONLY:
if "to_out" in lllite_name:
continue
if ATTN1_ETC_ONLY:
if "proj_out" in lllite_name:
pass
elif "attn1" in lllite_name and (
"to_k" in lllite_name or "to_v" in lllite_name or "to_out" in lllite_name
):
pass
elif "ff_net_2" in lllite_name:
pass
else:
continue
child_module.set_lllite(depth, cond_emb_dim, lllite_name, mlp_dim, dropout, multiplier)
modules.append(child_module)
return modules
target_modules = SdxlUNet2DConditionModelControlNetLLLite.UNET_TARGET_REPLACE_MODULE
if not TRANSFORMER_ONLY:
target_modules = target_modules + SdxlUNet2DConditionModelControlNetLLLite.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
# create module instances
self.lllite_modules = apply_to_modules(self, target_modules)
print(f"enable ControlNet LLLite for U-Net: {len(self.lllite_modules)} modules.")
# def prepare_optimizer_params(self):
def prepare_params(self):
train_params = []
non_train_params = []
for name, p in self.named_parameters():
if "lllite" in name:
train_params.append(p)
else:
non_train_params.append(p)
print(f"count of trainable parameters: {len(train_params)}")
print(f"count of non-trainable parameters: {len(non_train_params)}")
for p in non_train_params:
p.requires_grad_(False)
# without this, an error occurs in the optimizer
# RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
non_train_params[0].requires_grad_(True)
for p in train_params:
p.requires_grad_(True)
return train_params
# def prepare_grad_etc(self):
# self.requires_grad_(True)
# def on_epoch_start(self):
# self.train()
def get_trainable_params(self):
return [p[1] for p in self.named_parameters() if "lllite" in p[0]]
def save_lllite_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
org_state_dict = self.state_dict()
# copy LLLite keys from org_state_dict to state_dict with key conversion
state_dict = {}
for key in org_state_dict.keys():
# split with ".lllite"
pos = key.find(".lllite")
if pos < 0:
continue
lllite_key = SdxlUNet2DConditionModelControlNetLLLite.LLLITE_PREFIX + "." + key[:pos]
lllite_key = lllite_key.replace(".", "_") + key[pos:]
lllite_key = lllite_key.replace(".lllite_", ".")
state_dict[lllite_key] = org_state_dict[key]
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def load_lllite_weights(self, file, non_lllite_unet_sd=None):
r"""
LLLiteの重みを読み込まない(initされた値を使う)場合はfileにNoneを指定する。
この場合、non_lllite_unet_sdにはU-Netのstate_dictを指定する。
If you do not want to load LLLite weights (use initialized values), specify None for file.
In this case, specify the state_dict of U-Net for non_lllite_unet_sd.
"""
if not file:
state_dict = self.state_dict()
for key in non_lllite_unet_sd:
if key in state_dict:
state_dict[key] = non_lllite_unet_sd[key]
info = self.load_state_dict(state_dict, False)
return info
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# module_name = module_name.replace("_block", "@blocks")
# module_name = module_name.replace("_layer", "@layer")
# module_name = module_name.replace("to_", "to@")
# module_name = module_name.replace("time_embed", "time@embed")
# module_name = module_name.replace("label_emb", "label@emb")
# module_name = module_name.replace("skip_connection", "skip@connection")
# module_name = module_name.replace("proj_in", "proj@in")
# module_name = module_name.replace("proj_out", "proj@out")
pattern = re.compile(r"(_block|_layer|to_|time_embed|label_emb|skip_connection|proj_in|proj_out)")
# convert to lllite with U-Net state dict
state_dict = non_lllite_unet_sd.copy() if non_lllite_unet_sd is not None else {}
for key in weights_sd.keys():
# split with "."
pos = key.find(".")
if pos < 0:
continue
module_name = key[:pos]
weight_name = key[pos + 1 :] # exclude "."
module_name = module_name.replace(SdxlUNet2DConditionModelControlNetLLLite.LLLITE_PREFIX + "_", "")
# これはうまくいかない。逆変換を考えなかった設計が悪い / this does not work well. bad design because I didn't think about inverse conversion
# module_name = module_name.replace("_", ".")
# ださいけどSDXLのU-Netの "_" を "@" に変換する / ugly but convert "_" of SDXL U-Net to "@"
matches = pattern.findall(module_name)
if matches is not None:
for m in matches:
print(module_name, m)
module_name = module_name.replace(m, m.replace("_", "@"))
module_name = module_name.replace("_", ".")
module_name = module_name.replace("@", "_")
lllite_key = module_name + ".lllite_" + weight_name
state_dict[lllite_key] = weights_sd[key]
info = self.load_state_dict(state_dict, False)
return info
def forward(self, x, timesteps=None, context=None, y=None, cond_image=None, **kwargs):
for m in self.lllite_modules:
m.set_cond_image(cond_image)
return super().forward(x, timesteps, context, y, **kwargs)
def replace_unet_linear_and_conv2d():
print("replace torch.nn.Linear and torch.nn.Conv2d to LLLiteLinear and LLLiteConv2d in U-Net")
sdxl_original_unet.torch.nn.Linear = LLLiteLinear
sdxl_original_unet.torch.nn.Conv2d = LLLiteConv2d
if __name__ == "__main__":
# デバッグ用 / for debug
# sdxl_original_unet.USE_REENTRANT = False
replace_unet_linear_and_conv2d()
# test shape etc
print("create unet")
unet = SdxlUNet2DConditionModelControlNetLLLite()
print("enable ControlNet-LLLite")
unet.apply_lllite(32, 64, None, False, 1.0)
unet.to("cuda") # .to(torch.float16)
# from safetensors.torch import load_file
# model_sd = load_file(r"E:\Work\SD\Models\sdxl\sd_xl_base_1.0_0.9vae.safetensors")
# unet_sd = {}
# # copy U-Net keys from unet_state_dict to state_dict
# prefix = "model.diffusion_model."
# for key in model_sd.keys():
# if key.startswith(prefix):
# converted_key = key[len(prefix) :]
# unet_sd[converted_key] = model_sd[key]
# info = unet.load_lllite_weights("r:/lllite_from_unet.safetensors", unet_sd)
# print(info)
# print(unet)
# print number of parameters
params = unet.prepare_params()
print("number of parameters", sum(p.numel() for p in params))
# print("type any key to continue")
# input()
unet.set_use_memory_efficient_attention(True, False)
unet.set_gradient_checkpointing(True)
unet.train() # for gradient checkpointing
# # visualize
# import torchviz
# print("run visualize")
# controlnet.set_control(conditioning_image)
# output = unet(x, t, ctx, y)
# print("make_dot")
# image = torchviz.make_dot(output, params=dict(controlnet.named_parameters()))
# print("render")
# image.format = "svg" # "png"
# image.render("NeuralNet") # すごく時間がかかるので注意 / be careful because it takes a long time
# input()
import bitsandbytes
optimizer = bitsandbytes.adam.Adam8bit(params, 1e-3)
scaler = torch.cuda.amp.GradScaler(enabled=True)
print("start training")
steps = 10
batch_size = 1
sample_param = [p for p in unet.named_parameters() if ".lllite_up." in p[0]][0]
for step in range(steps):
print(f"step {step}")
conditioning_image = torch.rand(batch_size, 3, 1024, 1024).cuda() * 2.0 - 1.0
x = torch.randn(batch_size, 4, 128, 128).cuda()
t = torch.randint(low=0, high=10, size=(batch_size,)).cuda()
ctx = torch.randn(batch_size, 77, 2048).cuda()
y = torch.randn(batch_size, sdxl_original_unet.ADM_IN_CHANNELS).cuda()
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
output = unet(x, t, ctx, y, conditioning_image)
target = torch.randn_like(output)
loss = torch.nn.functional.mse_loss(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
print(sample_param)
# from safetensors.torch import save_file
# print("save weights")
# unet.save_lllite_weights("r:/lllite_from_unet.safetensors", torch.float16, None)
|