File size: 17,749 Bytes
ea5c647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# some codes are copied from:
# https://github.com/huawei-noah/KD-NLP/blob/main/DyLoRA/

# Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved.
# Changes made to the original code:
# 2022.08.20 - Integrate the DyLoRA layer for the LoRA Linear layer
#  ------------------------------------------------------------------------------------------
#  Copyright (c) Microsoft Corporation. All rights reserved.
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------

import math
import os
import random
from typing import List, Tuple, Union
import torch
from torch import nn


class DyLoRAModule(torch.nn.Module):
    """
    replaces forward method of the original Linear, instead of replacing the original Linear module.
    """

    # NOTE: support dropout in future
    def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1, unit=1):
        super().__init__()
        self.lora_name = lora_name
        self.lora_dim = lora_dim
        self.unit = unit
        assert self.lora_dim % self.unit == 0, "rank must be a multiple of unit"

        if org_module.__class__.__name__ == "Conv2d":
            in_dim = org_module.in_channels
            out_dim = org_module.out_channels
        else:
            in_dim = org_module.in_features
            out_dim = org_module.out_features

        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
        self.scale = alpha / self.lora_dim
        self.register_buffer("alpha", torch.tensor(alpha))  # 定数として扱える

        self.is_conv2d = org_module.__class__.__name__ == "Conv2d"
        self.is_conv2d_3x3 = self.is_conv2d and org_module.kernel_size == (3, 3)

        if self.is_conv2d and self.is_conv2d_3x3:
            kernel_size = org_module.kernel_size
            self.stride = org_module.stride
            self.padding = org_module.padding
            self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim, *kernel_size)) for _ in range(self.lora_dim)])
            self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1, 1, 1)) for _ in range(self.lora_dim)])
        else:
            self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim)) for _ in range(self.lora_dim)])
            self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1)) for _ in range(self.lora_dim)])

        # same as microsoft's
        for lora in self.lora_A:
            torch.nn.init.kaiming_uniform_(lora, a=math.sqrt(5))
        for lora in self.lora_B:
            torch.nn.init.zeros_(lora)

        self.multiplier = multiplier
        self.org_module = org_module  # remove in applying

    def apply_to(self):
        self.org_forward = self.org_module.forward
        self.org_module.forward = self.forward
        del self.org_module

    def forward(self, x):
        result = self.org_forward(x)

        # specify the dynamic rank
        trainable_rank = random.randint(0, self.lora_dim - 1)
        trainable_rank = trainable_rank - trainable_rank % self.unit  # make sure the rank is a multiple of unit

        # 一部のパラメータを固定して、残りのパラメータを学習する
        for i in range(0, trainable_rank):
            self.lora_A[i].requires_grad = False
            self.lora_B[i].requires_grad = False
        for i in range(trainable_rank, trainable_rank + self.unit):
            self.lora_A[i].requires_grad = True
            self.lora_B[i].requires_grad = True
        for i in range(trainable_rank + self.unit, self.lora_dim):
            self.lora_A[i].requires_grad = False
            self.lora_B[i].requires_grad = False

        lora_A = torch.cat(tuple(self.lora_A), dim=0)
        lora_B = torch.cat(tuple(self.lora_B), dim=1)

        # calculate with lora_A and lora_B
        if self.is_conv2d_3x3:
            ab = torch.nn.functional.conv2d(x, lora_A, stride=self.stride, padding=self.padding)
            ab = torch.nn.functional.conv2d(ab, lora_B)
        else:
            ab = x
            if self.is_conv2d:
                ab = ab.reshape(ab.size(0), ab.size(1), -1).transpose(1, 2)  # (N, C, H, W) -> (N, H*W, C)

            ab = torch.nn.functional.linear(ab, lora_A)
            ab = torch.nn.functional.linear(ab, lora_B)

            if self.is_conv2d:
                ab = ab.transpose(1, 2).reshape(ab.size(0), -1, *x.size()[2:])  # (N, H*W, C) -> (N, C, H, W)

        # 最後の項は、低rankをより大きくするためのスケーリング(じゃないかな)
        result = result + ab * self.scale * math.sqrt(self.lora_dim / (trainable_rank + self.unit))

        # NOTE weightに加算してからlinear/conv2dを呼んだほうが速いかも
        return result

    def state_dict(self, destination=None, prefix="", keep_vars=False):
        # state dictを通常のLoRAと同じにする:
        # nn.ParameterListは `.lora_A.0` みたいな名前になるので、forwardと同様にcatして入れ替える
        sd = super().state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)

        lora_A_weight = torch.cat(tuple(self.lora_A), dim=0)
        if self.is_conv2d and not self.is_conv2d_3x3:
            lora_A_weight = lora_A_weight.unsqueeze(-1).unsqueeze(-1)

        lora_B_weight = torch.cat(tuple(self.lora_B), dim=1)
        if self.is_conv2d and not self.is_conv2d_3x3:
            lora_B_weight = lora_B_weight.unsqueeze(-1).unsqueeze(-1)

        sd[self.lora_name + ".lora_down.weight"] = lora_A_weight if keep_vars else lora_A_weight.detach()
        sd[self.lora_name + ".lora_up.weight"] = lora_B_weight if keep_vars else lora_B_weight.detach()

        i = 0
        while True:
            key_a = f"{self.lora_name}.lora_A.{i}"
            key_b = f"{self.lora_name}.lora_B.{i}"
            if key_a in sd:
                sd.pop(key_a)
                sd.pop(key_b)
            else:
                break
            i += 1
        return sd

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        # 通常のLoRAと同じstate dictを読み込めるようにする:この方法はchatGPTに聞いた
        lora_A_weight = state_dict.pop(self.lora_name + ".lora_down.weight", None)
        lora_B_weight = state_dict.pop(self.lora_name + ".lora_up.weight", None)

        if lora_A_weight is None or lora_B_weight is None:
            if strict:
                raise KeyError(f"{self.lora_name}.lora_down/up.weight is not found")
            else:
                return

        if self.is_conv2d and not self.is_conv2d_3x3:
            lora_A_weight = lora_A_weight.squeeze(-1).squeeze(-1)
            lora_B_weight = lora_B_weight.squeeze(-1).squeeze(-1)

        state_dict.update(
            {f"{self.lora_name}.lora_A.{i}": nn.Parameter(lora_A_weight[i].unsqueeze(0)) for i in range(lora_A_weight.size(0))}
        )
        state_dict.update(
            {f"{self.lora_name}.lora_B.{i}": nn.Parameter(lora_B_weight[:, i].unsqueeze(1)) for i in range(lora_B_weight.size(1))}
        )

        super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)


def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs):
    if network_dim is None:
        network_dim = 4  # default
    if network_alpha is None:
        network_alpha = 1.0

    # extract dim/alpha for conv2d, and block dim
    conv_dim = kwargs.get("conv_dim", None)
    conv_alpha = kwargs.get("conv_alpha", None)
    unit = kwargs.get("unit", None)
    if conv_dim is not None:
        conv_dim = int(conv_dim)
        assert conv_dim == network_dim, "conv_dim must be same as network_dim"
        if conv_alpha is None:
            conv_alpha = 1.0
        else:
            conv_alpha = float(conv_alpha)
    if unit is not None:
        unit = int(unit)
    else:
        unit = 1

    network = DyLoRANetwork(
        text_encoder,
        unet,
        multiplier=multiplier,
        lora_dim=network_dim,
        alpha=network_alpha,
        apply_to_conv=conv_dim is not None,
        unit=unit,
        varbose=True,
    )
    return network


# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
    if weights_sd is None:
        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import load_file, safe_open

            weights_sd = load_file(file)
        else:
            weights_sd = torch.load(file, map_location="cpu")

    # get dim/alpha mapping
    modules_dim = {}
    modules_alpha = {}
    for key, value in weights_sd.items():
        if "." not in key:
            continue

        lora_name = key.split(".")[0]
        if "alpha" in key:
            modules_alpha[lora_name] = value
        elif "lora_down" in key:
            dim = value.size()[0]
            modules_dim[lora_name] = dim
            # print(lora_name, value.size(), dim)

    # support old LoRA without alpha
    for key in modules_dim.keys():
        if key not in modules_alpha:
            modules_alpha = modules_dim[key]

    module_class = DyLoRAModule

    network = DyLoRANetwork(
        text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class
    )
    return network, weights_sd


class DyLoRANetwork(torch.nn.Module):
    UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
    UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
    TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
    LORA_PREFIX_UNET = "lora_unet"
    LORA_PREFIX_TEXT_ENCODER = "lora_te"

    def __init__(
        self,
        text_encoder,
        unet,
        multiplier=1.0,
        lora_dim=4,
        alpha=1,
        apply_to_conv=False,
        modules_dim=None,
        modules_alpha=None,
        unit=1,
        module_class=DyLoRAModule,
        varbose=False,
    ) -> None:
        super().__init__()
        self.multiplier = multiplier

        self.lora_dim = lora_dim
        self.alpha = alpha
        self.apply_to_conv = apply_to_conv

        if modules_dim is not None:
            print(f"create LoRA network from weights")
        else:
            print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}, unit: {unit}")
            if self.apply_to_conv:
                print(f"apply LoRA to Conv2d with kernel size (3,3).")

        # create module instances
        def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules) -> List[DyLoRAModule]:
            prefix = DyLoRANetwork.LORA_PREFIX_UNET if is_unet else DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER
            loras = []
            for name, module in root_module.named_modules():
                if module.__class__.__name__ in target_replace_modules:
                    for child_name, child_module in module.named_modules():
                        is_linear = child_module.__class__.__name__ == "Linear"
                        is_conv2d = child_module.__class__.__name__ == "Conv2d"
                        is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)

                        if is_linear or is_conv2d:
                            lora_name = prefix + "." + name + "." + child_name
                            lora_name = lora_name.replace(".", "_")

                            dim = None
                            alpha = None
                            if modules_dim is not None:
                                if lora_name in modules_dim:
                                    dim = modules_dim[lora_name]
                                    alpha = modules_alpha[lora_name]
                            else:
                                if is_linear or is_conv2d_1x1 or apply_to_conv:
                                    dim = self.lora_dim
                                    alpha = self.alpha

                            if dim is None or dim == 0:
                                continue

                            # dropout and fan_in_fan_out is default
                            lora = module_class(lora_name, child_module, self.multiplier, dim, alpha, unit)
                            loras.append(lora)
            return loras

        self.text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
        print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")

        # extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
        target_modules = DyLoRANetwork.UNET_TARGET_REPLACE_MODULE
        if modules_dim is not None or self.apply_to_conv:
            target_modules += DyLoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3

        self.unet_loras = create_modules(True, unet, target_modules)
        print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")

    def set_multiplier(self, multiplier):
        self.multiplier = multiplier
        for lora in self.text_encoder_loras + self.unet_loras:
            lora.multiplier = self.multiplier

    def load_weights(self, file):
        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import load_file

            weights_sd = load_file(file)
        else:
            weights_sd = torch.load(file, map_location="cpu")

        info = self.load_state_dict(weights_sd, False)
        return info

    def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
        if apply_text_encoder:
            print("enable LoRA for text encoder")
        else:
            self.text_encoder_loras = []

        if apply_unet:
            print("enable LoRA for U-Net")
        else:
            self.unet_loras = []

        for lora in self.text_encoder_loras + self.unet_loras:
            lora.apply_to()
            self.add_module(lora.lora_name, lora)

    """
    def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
        apply_text_encoder = apply_unet = False
        for key in weights_sd.keys():
            if key.startswith(DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER):
                apply_text_encoder = True
            elif key.startswith(DyLoRANetwork.LORA_PREFIX_UNET):
                apply_unet = True

        if apply_text_encoder:
            print("enable LoRA for text encoder")
        else:
            self.text_encoder_loras = []

        if apply_unet:
            print("enable LoRA for U-Net")
        else:
            self.unet_loras = []

        for lora in self.text_encoder_loras + self.unet_loras:
            sd_for_lora = {}
            for key in weights_sd.keys():
                if key.startswith(lora.lora_name):
                    sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
            lora.merge_to(sd_for_lora, dtype, device)

        print(f"weights are merged")
    """

    def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
        self.requires_grad_(True)
        all_params = []

        def enumerate_params(loras):
            params = []
            for lora in loras:
                params.extend(lora.parameters())
            return params

        if self.text_encoder_loras:
            param_data = {"params": enumerate_params(self.text_encoder_loras)}
            if text_encoder_lr is not None:
                param_data["lr"] = text_encoder_lr
            all_params.append(param_data)

        if self.unet_loras:
            param_data = {"params": enumerate_params(self.unet_loras)}
            if unet_lr is not None:
                param_data["lr"] = unet_lr
            all_params.append(param_data)

        return all_params

    def enable_gradient_checkpointing(self):
        # not supported
        pass

    def prepare_grad_etc(self, text_encoder, unet):
        self.requires_grad_(True)

    def on_epoch_start(self, text_encoder, unet):
        self.train()

    def get_trainable_params(self):
        return self.parameters()

    def save_weights(self, file, dtype, metadata):
        if metadata is not None and len(metadata) == 0:
            metadata = None

        state_dict = self.state_dict()

        if dtype is not None:
            for key in list(state_dict.keys()):
                v = state_dict[key]
                v = v.detach().clone().to("cpu").to(dtype)
                state_dict[key] = v

        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import save_file
            from library import train_util

            # Precalculate model hashes to save time on indexing
            if metadata is None:
                metadata = {}
            model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
            metadata["sshs_model_hash"] = model_hash
            metadata["sshs_legacy_hash"] = legacy_hash

            save_file(state_dict, file, metadata)
        else:
            torch.save(state_dict, file)

    # mask is a tensor with values from 0 to 1
    def set_region(self, sub_prompt_index, is_last_network, mask):
        pass

    def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared):
        pass