File size: 5,852 Bytes
35575bb 19b3da3 35575bb 19b3da3 8aeb9e5 19b3da3 9bb133c 19b3da3 35575bb 19b3da3 9bb133c 1bc457e 19b3da3 8aeb9e5 19b3da3 9bb133c 1bc457e 19b3da3 a3d6c18 19b3da3 a3d6c18 19b3da3 9bb133c 1bc457e a3d6c18 19b3da3 8aeb9e5 35575bb 8aeb9e5 35575bb 8aeb9e5 19b3da3 8aeb9e5 19b3da3 8aeb9e5 35575bb 8aeb9e5 19b3da3 8aeb9e5 19b3da3 35575bb 19b3da3 a3f5c82 19b3da3 8aeb9e5 19b3da3 8aeb9e5 19b3da3 8aeb9e5 19b3da3 35575bb 42ef134 35575bb 19b3da3 8aeb9e5 35575bb 19b3da3 9bb133c 35575bb 9bb133c 1bc457e 22df957 1bc457e 99a0484 1bc457e 9bb133c 8aeb9e5 9bb133c 8aeb9e5 19b3da3 35575bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import io
import math
import os
from pathlib import Path
from typing import Optional, Union
import cv2
import numpy as np
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from basicsr.utils.download_util import load_file_from_url
from gfpgan import GFPGANer
from PIL import Image
from realesrgan import RealESRGANer # pyright: ignore
import internals.util.image as ImageUtil
from internals.util.commons import download_image
from internals.util.config import get_root_dir
from models.ultrasharp.model import Ultrasharp
class Upscaler:
__model_esrgan_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
__model_esrgan_anime_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
__model_gfpgan_url = (
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth"
)
__model_4x_ultrasharp_url = (
"https://comic-assets.s3.ap-south-1.amazonaws.com/models/4x-UltraSharp.pth"
)
__loaded = False
def load(self):
if self.__loaded:
return
download_dir = Path(Path.home() / ".cache" / "realesrgan")
download_dir.mkdir(parents=True, exist_ok=True)
self.__model_path = self.__preload_model(self.__model_esrgan_url, download_dir)
self.__model_path_anime = self.__preload_model(
self.__model_esrgan_anime_url, download_dir
)
self.__model_path_gfpgan = self.__preload_model(
self.__model_gfpgan_url, download_dir
)
self.__model_path_4x_ultrasharp = self.__preload_model(
self.__model_4x_ultrasharp_url, download_dir
)
self.__loaded = True
def upscale(
self,
image: Union[str, Image.Image],
width: int,
height: int,
face_enhance: bool,
resize_dimension: Optional[int] = None,
) -> bytes:
"if resize dimension is not provided, use the smaller of width and height"
self.load()
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=32,
upscale=4,
act_type="prelu",
)
return self.__internal_upscale(
image,
resize_dimension, # type: ignore
face_enhance,
width,
height,
self.__model_path,
model,
)
def upscale_anime(
self,
image: Union[str, Image.Image],
width: int,
height: int,
face_enhance: bool,
resize_dimension: int,
) -> bytes:
"if resize dimension is not provided, use the smaller of width and height"
self.load()
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=6,
num_grow_ch=32,
scale=4,
)
return self.__internal_upscale(
image,
resize_dimension,
face_enhance,
width,
height,
self.__model_path_anime,
model,
)
def __preload_model(self, url: str, download_dir: Path):
name = url.split("/")[-1]
if not os.path.exists(str(download_dir / name)):
return load_file_from_url(
url=url,
model_dir=str(download_dir),
progress=True,
file_name=None,
)
else:
return str(download_dir / name)
def __internal_upscale(
self,
image,
resize_dimension: int,
face_enhance: bool,
width: int,
height: int,
model_path: str,
model,
) -> bytes:
if type(image) is str:
image = download_image(image, mode="RGBA")
w, h = image.size
# if max(w, h) > 1024:
# image = ImageUtil.resize_image(image, dimension=1024)
in_path = str(Path.home() / ".cache" / "input_upscale.png")
image.save(in_path)
input_image = cv2.imread(in_path, cv2.IMREAD_UNCHANGED)
dimension = max(input_image.shape[0], input_image.shape[1])
if not resize_dimension:
resize_dimension = max(width, height)
scale = max(math.floor(resize_dimension / dimension), 2)
print("Upscaling by: ", scale)
os.chdir(str(Path.home() / ".cache"))
if scale == 4:
print("Using 4x-Ultrasharp")
upsampler = Ultrasharp(
model_path=self.__model_path_4x_ultrasharp,
tile=320,
tile_pad=10,
)
else:
print("Using RealESRGANer")
upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
half=False,
gpu_id="0",
tile=320,
tile_pad=10,
pre_pad=0,
)
face_enhancer = GFPGANer(
model_path=self.__model_path_gfpgan,
upscale=scale,
arch="clean",
channel_multiplier=2,
bg_upsampler=upsampler,
)
if face_enhance:
_, _, output = face_enhancer.enhance(
input_image, has_aligned=False, only_center_face=False, paste_back=True
)
else:
output, _ = upsampler.enhance(input_image, outscale=scale)
os.chdir(get_root_dir())
cv2.imwrite("out.png", output)
out_bytes = cv2.imencode(".png", output)[1].tobytes()
return out_bytes
@staticmethod
def to_pil(buffer: bytes, mode="RGB") -> Image.Image:
return Image.open(io.BytesIO(buffer)).convert(mode)
|