File size: 33,612 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
############################################################
# The contents below have been combined using files in the #
# following repository:                                    #
# https://github.com/richzhang/PerceptualSimilarity        #
############################################################

############################################################
#                       __init__.py                        #
############################################################

import numpy as np
from skimage.metrics import structural_similarity
import torch

from saicinpainting.utils import get_shape


class PerceptualLoss(torch.nn.Module):
    def __init__(self, model='net-lin', net='alex', colorspace='rgb', model_path=None, spatial=False, use_gpu=True):
        # VGG using our perceptually-learned weights (LPIPS metric)
        # def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss
        super(PerceptualLoss, self).__init__()
        self.use_gpu = use_gpu
        self.spatial = spatial
        self.model = DistModel()
        self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace,
                              model_path=model_path, spatial=self.spatial)

    def forward(self, pred, target, normalize=True):
        """
        Pred and target are Variables.
        If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1]
        If normalize is False, assumes the images are already between [-1,+1]
        Inputs pred and target are Nx3xHxW
        Output pytorch Variable N long
        """

        if normalize:
            target = 2 * target - 1
            pred = 2 * pred - 1

        return self.model(target, pred)


def normalize_tensor(in_feat, eps=1e-10):
    norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True))
    return in_feat / (norm_factor + eps)


def l2(p0, p1, range=255.):
    return .5 * np.mean((p0 / range - p1 / range) ** 2)


def psnr(p0, p1, peak=255.):
    return 10 * np.log10(peak ** 2 / np.mean((1. * p0 - 1. * p1) ** 2))


def dssim(p0, p1, range=255.):
    return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2.


def rgb2lab(in_img, mean_cent=False):
    from skimage import color
    img_lab = color.rgb2lab(in_img)
    if (mean_cent):
        img_lab[:, :, 0] = img_lab[:, :, 0] - 50
    return img_lab


def tensor2np(tensor_obj):
    # change dimension of a tensor object into a numpy array
    return tensor_obj[0].cpu().float().numpy().transpose((1, 2, 0))


def np2tensor(np_obj):
    # change dimenion of np array into tensor array
    return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))


def tensor2tensorlab(image_tensor, to_norm=True, mc_only=False):
    # image tensor to lab tensor
    from skimage import color

    img = tensor2im(image_tensor)
    img_lab = color.rgb2lab(img)
    if (mc_only):
        img_lab[:, :, 0] = img_lab[:, :, 0] - 50
    if (to_norm and not mc_only):
        img_lab[:, :, 0] = img_lab[:, :, 0] - 50
        img_lab = img_lab / 100.

    return np2tensor(img_lab)


def tensorlab2tensor(lab_tensor, return_inbnd=False):
    from skimage import color
    import warnings
    warnings.filterwarnings("ignore")

    lab = tensor2np(lab_tensor) * 100.
    lab[:, :, 0] = lab[:, :, 0] + 50

    rgb_back = 255. * np.clip(color.lab2rgb(lab.astype('float')), 0, 1)
    if (return_inbnd):
        # convert back to lab, see if we match
        lab_back = color.rgb2lab(rgb_back.astype('uint8'))
        mask = 1. * np.isclose(lab_back, lab, atol=2.)
        mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis])
        return (im2tensor(rgb_back), mask)
    else:
        return im2tensor(rgb_back)


def rgb2lab(input):
    from skimage import color
    return color.rgb2lab(input / 255.)


def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.):
    image_numpy = image_tensor[0].cpu().float().numpy()
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
    return image_numpy.astype(imtype)


def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.):
    return torch.Tensor((image / factor - cent)
                        [:, :, :, np.newaxis].transpose((3, 2, 0, 1)))


def tensor2vec(vector_tensor):
    return vector_tensor.data.cpu().numpy()[:, :, 0, 0]


def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap


def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.):
    # def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.):
    image_numpy = image_tensor[0].cpu().float().numpy()
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
    return image_numpy.astype(imtype)


def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.):
    # def im2tensor(image, imtype=np.uint8, cent=1., factor=1.):
    return torch.Tensor((image / factor - cent)
                        [:, :, :, np.newaxis].transpose((3, 2, 0, 1)))


############################################################
#                      base_model.py                       #
############################################################


class BaseModel(torch.nn.Module):
    def __init__(self):
        super().__init__()

    def name(self):
        return 'BaseModel'

    def initialize(self, use_gpu=True):
        self.use_gpu = use_gpu

    def forward(self):
        pass

    def get_image_paths(self):
        pass

    def optimize_parameters(self):
        pass

    def get_current_visuals(self):
        return self.input

    def get_current_errors(self):
        return {}

    def save(self, label):
        pass

    # helper saving function that can be used by subclasses
    def save_network(self, network, path, network_label, epoch_label):
        save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
        save_path = os.path.join(path, save_filename)
        torch.save(network.state_dict(), save_path)

    # helper loading function that can be used by subclasses
    def load_network(self, network, network_label, epoch_label):
        save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
        save_path = os.path.join(self.save_dir, save_filename)
        print('Loading network from %s' % save_path)
        network.load_state_dict(torch.load(save_path, map_location='cpu'))

    def update_learning_rate():
        pass

    def get_image_paths(self):
        return self.image_paths

    def save_done(self, flag=False):
        np.save(os.path.join(self.save_dir, 'done_flag'), flag)
        np.savetxt(os.path.join(self.save_dir, 'done_flag'), [flag, ], fmt='%i')


############################################################
#                      dist_model.py                       #
############################################################

import os
from collections import OrderedDict
from scipy.ndimage import zoom
from tqdm import tqdm


class DistModel(BaseModel):
    def name(self):
        return self.model_name

    def initialize(self, model='net-lin', net='alex', colorspace='Lab', pnet_rand=False, pnet_tune=False,
                   model_path=None,
                   use_gpu=True, printNet=False, spatial=False,
                   is_train=False, lr=.0001, beta1=0.5, version='0.1'):
        '''
        INPUTS
            model - ['net-lin'] for linearly calibrated network
                    ['net'] for off-the-shelf network
                    ['L2'] for L2 distance in Lab colorspace
                    ['SSIM'] for ssim in RGB colorspace
            net - ['squeeze','alex','vgg']
            model_path - if None, will look in weights/[NET_NAME].pth
            colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM
            use_gpu - bool - whether or not to use a GPU
            printNet - bool - whether or not to print network architecture out
            spatial - bool - whether to output an array containing varying distances across spatial dimensions
            spatial_shape - if given, output spatial shape. if None then spatial shape is determined automatically via spatial_factor (see below).
            spatial_factor - if given, specifies upsampling factor relative to the largest spatial extent of a convolutional layer. if None then resized to size of input images.
            spatial_order - spline order of filter for upsampling in spatial mode, by default 1 (bilinear).
            is_train - bool - [True] for training mode
            lr - float - initial learning rate
            beta1 - float - initial momentum term for adam
            version - 0.1 for latest, 0.0 was original (with a bug)
        '''
        BaseModel.initialize(self, use_gpu=use_gpu)

        self.model = model
        self.net = net
        self.is_train = is_train
        self.spatial = spatial
        self.model_name = '%s [%s]' % (model, net)

        if (self.model == 'net-lin'):  # pretrained net + linear layer
            self.net = PNetLin(pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net,
                               use_dropout=True, spatial=spatial, version=version, lpips=True)
            kw = dict(map_location='cpu')
            if (model_path is None):
                import inspect
                model_path = os.path.abspath(
                    os.path.join(os.path.dirname(__file__), '..', '..', '..', 'models', 'lpips_models', f'{net}.pth'))

            if (not is_train):
                self.net.load_state_dict(torch.load(model_path, **kw), strict=False)

        elif (self.model == 'net'):  # pretrained network
            self.net = PNetLin(pnet_rand=pnet_rand, pnet_type=net, lpips=False)
        elif (self.model in ['L2', 'l2']):
            self.net = L2(use_gpu=use_gpu, colorspace=colorspace)  # not really a network, only for testing
            self.model_name = 'L2'
        elif (self.model in ['DSSIM', 'dssim', 'SSIM', 'ssim']):
            self.net = DSSIM(use_gpu=use_gpu, colorspace=colorspace)
            self.model_name = 'SSIM'
        else:
            raise ValueError("Model [%s] not recognized." % self.model)

        self.trainable_parameters = list(self.net.parameters())

        if self.is_train:  # training mode
            # extra network on top to go from distances (d0,d1) => predicted human judgment (h*)
            self.rankLoss = BCERankingLoss()
            self.trainable_parameters += list(self.rankLoss.net.parameters())
            self.lr = lr
            self.old_lr = lr
            self.optimizer_net = torch.optim.Adam(self.trainable_parameters, lr=lr, betas=(beta1, 0.999))
        else:  # test mode
            self.net.eval()

        # if (use_gpu):
            # self.net.to(gpu_ids[0])
            # self.net = torch.nn.DataParallel(self.net, device_ids=gpu_ids)
            # if (self.is_train):
            #     self.rankLoss = self.rankLoss.to(device=gpu_ids[0])  # just put this on GPU0

        if (printNet):
            print('---------- Networks initialized -------------')
            print_network(self.net)
            print('-----------------------------------------------')

    def forward(self, in0, in1, retPerLayer=False):
        ''' Function computes the distance between image patches in0 and in1
        INPUTS
            in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1]
        OUTPUT
            computed distances between in0 and in1
        '''

        return self.net(in0, in1, retPerLayer=retPerLayer)

    # ***** TRAINING FUNCTIONS *****
    def optimize_parameters(self):
        self.forward_train()
        self.optimizer_net.zero_grad()
        self.backward_train()
        self.optimizer_net.step()
        self.clamp_weights()

    def clamp_weights(self):
        for module in self.net.modules():
            if (hasattr(module, 'weight') and module.kernel_size == (1, 1)):
                module.weight.data = torch.clamp(module.weight.data, min=0)

    def set_input(self, data):
        self.input_ref = data['ref']
        self.input_p0 = data['p0']
        self.input_p1 = data['p1']
        self.input_judge = data['judge']

        # if (self.use_gpu):
        #     self.input_ref = self.input_ref.to(device=self.gpu_ids[0])
        #     self.input_p0 = self.input_p0.to(device=self.gpu_ids[0])
        #     self.input_p1 = self.input_p1.to(device=self.gpu_ids[0])
        #     self.input_judge = self.input_judge.to(device=self.gpu_ids[0])

        # self.var_ref = Variable(self.input_ref, requires_grad=True)
        # self.var_p0 = Variable(self.input_p0, requires_grad=True)
        # self.var_p1 = Variable(self.input_p1, requires_grad=True)

    def forward_train(self):  # run forward pass
        # print(self.net.module.scaling_layer.shift)
        # print(torch.norm(self.net.module.net.slice1[0].weight).item(), torch.norm(self.net.module.lin0.model[1].weight).item())

        assert False, "We shoud've not get here when using LPIPS as a metric"

        self.d0 = self(self.var_ref, self.var_p0)
        self.d1 = self(self.var_ref, self.var_p1)
        self.acc_r = self.compute_accuracy(self.d0, self.d1, self.input_judge)

        self.var_judge = Variable(1. * self.input_judge).view(self.d0.size())

        self.loss_total = self.rankLoss(self.d0, self.d1, self.var_judge * 2. - 1.)

        return self.loss_total

    def backward_train(self):
        torch.mean(self.loss_total).backward()

    def compute_accuracy(self, d0, d1, judge):
        ''' d0, d1 are Variables, judge is a Tensor '''
        d1_lt_d0 = (d1 < d0).cpu().data.numpy().flatten()
        judge_per = judge.cpu().numpy().flatten()
        return d1_lt_d0 * judge_per + (1 - d1_lt_d0) * (1 - judge_per)

    def get_current_errors(self):
        retDict = OrderedDict([('loss_total', self.loss_total.data.cpu().numpy()),
                               ('acc_r', self.acc_r)])

        for key in retDict.keys():
            retDict[key] = np.mean(retDict[key])

        return retDict

    def get_current_visuals(self):
        zoom_factor = 256 / self.var_ref.data.size()[2]

        ref_img = tensor2im(self.var_ref.data)
        p0_img = tensor2im(self.var_p0.data)
        p1_img = tensor2im(self.var_p1.data)

        ref_img_vis = zoom(ref_img, [zoom_factor, zoom_factor, 1], order=0)
        p0_img_vis = zoom(p0_img, [zoom_factor, zoom_factor, 1], order=0)
        p1_img_vis = zoom(p1_img, [zoom_factor, zoom_factor, 1], order=0)

        return OrderedDict([('ref', ref_img_vis),
                            ('p0', p0_img_vis),
                            ('p1', p1_img_vis)])

    def save(self, path, label):
        if (self.use_gpu):
            self.save_network(self.net.module, path, '', label)
        else:
            self.save_network(self.net, path, '', label)
        self.save_network(self.rankLoss.net, path, 'rank', label)

    def update_learning_rate(self, nepoch_decay):
        lrd = self.lr / nepoch_decay
        lr = self.old_lr - lrd

        for param_group in self.optimizer_net.param_groups:
            param_group['lr'] = lr

        print('update lr [%s] decay: %f -> %f' % (type, self.old_lr, lr))
        self.old_lr = lr


def score_2afc_dataset(data_loader, func, name=''):
    ''' Function computes Two Alternative Forced Choice (2AFC) score using
        distance function 'func' in dataset 'data_loader'
    INPUTS
        data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside
        func - callable distance function - calling d=func(in0,in1) should take 2
            pytorch tensors with shape Nx3xXxY, and return numpy array of length N
    OUTPUTS
        [0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators
        [1] - dictionary with following elements
            d0s,d1s - N arrays containing distances between reference patch to perturbed patches
            gts - N array in [0,1], preferred patch selected by human evaluators
                (closer to "0" for left patch p0, "1" for right patch p1,
                "0.6" means 60pct people preferred right patch, 40pct preferred left)
            scores - N array in [0,1], corresponding to what percentage function agreed with humans
    CONSTS
        N - number of test triplets in data_loader
    '''

    d0s = []
    d1s = []
    gts = []

    for data in tqdm(data_loader.load_data(), desc=name):
        d0s += func(data['ref'], data['p0']).data.cpu().numpy().flatten().tolist()
        d1s += func(data['ref'], data['p1']).data.cpu().numpy().flatten().tolist()
        gts += data['judge'].cpu().numpy().flatten().tolist()

    d0s = np.array(d0s)
    d1s = np.array(d1s)
    gts = np.array(gts)
    scores = (d0s < d1s) * (1. - gts) + (d1s < d0s) * gts + (d1s == d0s) * .5

    return (np.mean(scores), dict(d0s=d0s, d1s=d1s, gts=gts, scores=scores))


def score_jnd_dataset(data_loader, func, name=''):
    ''' Function computes JND score using distance function 'func' in dataset 'data_loader'
    INPUTS
        data_loader - CustomDatasetDataLoader object - contains a JNDDataset inside
        func - callable distance function - calling d=func(in0,in1) should take 2
            pytorch tensors with shape Nx3xXxY, and return pytorch array of length N
    OUTPUTS
        [0] - JND score in [0,1], mAP score (area under precision-recall curve)
        [1] - dictionary with following elements
            ds - N array containing distances between two patches shown to human evaluator
            sames - N array containing fraction of people who thought the two patches were identical
    CONSTS
        N - number of test triplets in data_loader
    '''

    ds = []
    gts = []

    for data in tqdm(data_loader.load_data(), desc=name):
        ds += func(data['p0'], data['p1']).data.cpu().numpy().tolist()
        gts += data['same'].cpu().numpy().flatten().tolist()

    sames = np.array(gts)
    ds = np.array(ds)

    sorted_inds = np.argsort(ds)
    ds_sorted = ds[sorted_inds]
    sames_sorted = sames[sorted_inds]

    TPs = np.cumsum(sames_sorted)
    FPs = np.cumsum(1 - sames_sorted)
    FNs = np.sum(sames_sorted) - TPs

    precs = TPs / (TPs + FPs)
    recs = TPs / (TPs + FNs)
    score = voc_ap(recs, precs)

    return (score, dict(ds=ds, sames=sames))


############################################################
#                    networks_basic.py                     #
############################################################

import torch.nn as nn
from torch.autograd import Variable
import numpy as np


def spatial_average(in_tens, keepdim=True):
    return in_tens.mean([2, 3], keepdim=keepdim)


def upsample(in_tens, out_H=64):  # assumes scale factor is same for H and W
    in_H = in_tens.shape[2]
    scale_factor = 1. * out_H / in_H

    return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens)


# Learned perceptual metric
class PNetLin(nn.Module):
    def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False,
                 version='0.1', lpips=True):
        super(PNetLin, self).__init__()

        self.pnet_type = pnet_type
        self.pnet_tune = pnet_tune
        self.pnet_rand = pnet_rand
        self.spatial = spatial
        self.lpips = lpips
        self.version = version
        self.scaling_layer = ScalingLayer()

        if (self.pnet_type in ['vgg', 'vgg16']):
            net_type = vgg16
            self.chns = [64, 128, 256, 512, 512]
        elif (self.pnet_type == 'alex'):
            net_type = alexnet
            self.chns = [64, 192, 384, 256, 256]
        elif (self.pnet_type == 'squeeze'):
            net_type = squeezenet
            self.chns = [64, 128, 256, 384, 384, 512, 512]
        self.L = len(self.chns)

        self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)

        if (lpips):
            self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
            self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
            self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
            self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
            self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
            self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
            if (self.pnet_type == 'squeeze'):  # 7 layers for squeezenet
                self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
                self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
                self.lins += [self.lin5, self.lin6]

    def forward(self, in0, in1, retPerLayer=False):
        # v0.0 - original release had a bug, where input was not scaled
        in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version == '0.1' else (
        in0, in1)
        outs0, outs1 = self.net(in0_input), self.net(in1_input)
        feats0, feats1, diffs = {}, {}, {}

        for kk in range(self.L):
            feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
            diffs[kk] = (feats0[kk] - feats1[kk]) ** 2

        if (self.lpips):
            if (self.spatial):
                res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)]
            else:
                res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)]
        else:
            if (self.spatial):
                res = [upsample(diffs[kk].sum(dim=1, keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)]
            else:
                res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)]

        val = res[0]
        for l in range(1, self.L):
            val += res[l]

        if (retPerLayer):
            return (val, res)
        else:
            return val


class ScalingLayer(nn.Module):
    def __init__(self):
        super(ScalingLayer, self).__init__()
        self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
        self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])

    def forward(self, inp):
        return (inp - self.shift) / self.scale


class NetLinLayer(nn.Module):
    ''' A single linear layer which does a 1x1 conv '''

    def __init__(self, chn_in, chn_out=1, use_dropout=False):
        super(NetLinLayer, self).__init__()

        layers = [nn.Dropout(), ] if (use_dropout) else []
        layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
        self.model = nn.Sequential(*layers)


class Dist2LogitLayer(nn.Module):
    ''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''

    def __init__(self, chn_mid=32, use_sigmoid=True):
        super(Dist2LogitLayer, self).__init__()

        layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True), ]
        layers += [nn.LeakyReLU(0.2, True), ]
        layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True), ]
        layers += [nn.LeakyReLU(0.2, True), ]
        layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True), ]
        if (use_sigmoid):
            layers += [nn.Sigmoid(), ]
        self.model = nn.Sequential(*layers)

    def forward(self, d0, d1, eps=0.1):
        return self.model(torch.cat((d0, d1, d0 - d1, d0 / (d1 + eps), d1 / (d0 + eps)), dim=1))


class BCERankingLoss(nn.Module):
    def __init__(self, chn_mid=32):
        super(BCERankingLoss, self).__init__()
        self.net = Dist2LogitLayer(chn_mid=chn_mid)
        # self.parameters = list(self.net.parameters())
        self.loss = torch.nn.BCELoss()

    def forward(self, d0, d1, judge):
        per = (judge + 1.) / 2.
        self.logit = self.net(d0, d1)
        return self.loss(self.logit, per)


# L2, DSSIM metrics
class FakeNet(nn.Module):
    def __init__(self, use_gpu=True, colorspace='Lab'):
        super(FakeNet, self).__init__()
        self.use_gpu = use_gpu
        self.colorspace = colorspace


class L2(FakeNet):

    def forward(self, in0, in1, retPerLayer=None):
        assert (in0.size()[0] == 1)  # currently only supports batchSize 1

        if (self.colorspace == 'RGB'):
            (N, C, X, Y) = in0.size()
            value = torch.mean(torch.mean(torch.mean((in0 - in1) ** 2, dim=1).view(N, 1, X, Y), dim=2).view(N, 1, 1, Y),
                               dim=3).view(N)
            return value
        elif (self.colorspace == 'Lab'):
            value = l2(tensor2np(tensor2tensorlab(in0.data, to_norm=False)),
                       tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float')
            ret_var = Variable(torch.Tensor((value,)))
            # if (self.use_gpu):
            #     ret_var = ret_var.cuda()
            return ret_var


class DSSIM(FakeNet):

    def forward(self, in0, in1, retPerLayer=None):
        assert (in0.size()[0] == 1)  # currently only supports batchSize 1

        if (self.colorspace == 'RGB'):
            value = dssim(1. * tensor2im(in0.data), 1. * tensor2im(in1.data), range=255.).astype('float')
        elif (self.colorspace == 'Lab'):
            value = dssim(tensor2np(tensor2tensorlab(in0.data, to_norm=False)),
                          tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float')
        ret_var = Variable(torch.Tensor((value,)))
        # if (self.use_gpu):
        #     ret_var = ret_var.cuda()
        return ret_var


def print_network(net):
    num_params = 0
    for param in net.parameters():
        num_params += param.numel()
    print('Network', net)
    print('Total number of parameters: %d' % num_params)


############################################################
#                 pretrained_networks.py                   #
############################################################

from collections import namedtuple
import torch
from torchvision import models as tv


class squeezenet(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True):
        super(squeezenet, self).__init__()
        pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.slice6 = torch.nn.Sequential()
        self.slice7 = torch.nn.Sequential()
        self.N_slices = 7
        for x in range(2):
            self.slice1.add_module(str(x), pretrained_features[x])
        for x in range(2, 5):
            self.slice2.add_module(str(x), pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), pretrained_features[x])
        for x in range(10, 11):
            self.slice5.add_module(str(x), pretrained_features[x])
        for x in range(11, 12):
            self.slice6.add_module(str(x), pretrained_features[x])
        for x in range(12, 13):
            self.slice7.add_module(str(x), pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h = self.slice1(X)
        h_relu1 = h
        h = self.slice2(h)
        h_relu2 = h
        h = self.slice3(h)
        h_relu3 = h
        h = self.slice4(h)
        h_relu4 = h
        h = self.slice5(h)
        h_relu5 = h
        h = self.slice6(h)
        h_relu6 = h
        h = self.slice7(h)
        h_relu7 = h
        vgg_outputs = namedtuple("SqueezeOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5', 'relu6', 'relu7'])
        out = vgg_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7)

        return out


class alexnet(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True):
        super(alexnet, self).__init__()
        alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(2):
            self.slice1.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(2, 5):
            self.slice2.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(10, 12):
            self.slice5.add_module(str(x), alexnet_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h = self.slice1(X)
        h_relu1 = h
        h = self.slice2(h)
        h_relu2 = h
        h = self.slice3(h)
        h_relu3 = h
        h = self.slice4(h)
        h_relu4 = h
        h = self.slice5(h)
        h_relu5 = h
        alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5'])
        out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)

        return out


class vgg16(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True):
        super(vgg16, self).__init__()
        vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(23, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h = self.slice1(X)
        h_relu1_2 = h
        h = self.slice2(h)
        h_relu2_2 = h
        h = self.slice3(h)
        h_relu3_3 = h
        h = self.slice4(h)
        h_relu4_3 = h
        h = self.slice5(h)
        h_relu5_3 = h
        vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
        out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)

        return out


class resnet(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True, num=18):
        super(resnet, self).__init__()
        if (num == 18):
            self.net = tv.resnet18(pretrained=pretrained)
        elif (num == 34):
            self.net = tv.resnet34(pretrained=pretrained)
        elif (num == 50):
            self.net = tv.resnet50(pretrained=pretrained)
        elif (num == 101):
            self.net = tv.resnet101(pretrained=pretrained)
        elif (num == 152):
            self.net = tv.resnet152(pretrained=pretrained)
        self.N_slices = 5

        self.conv1 = self.net.conv1
        self.bn1 = self.net.bn1
        self.relu = self.net.relu
        self.maxpool = self.net.maxpool
        self.layer1 = self.net.layer1
        self.layer2 = self.net.layer2
        self.layer3 = self.net.layer3
        self.layer4 = self.net.layer4

    def forward(self, X):
        h = self.conv1(X)
        h = self.bn1(h)
        h = self.relu(h)
        h_relu1 = h
        h = self.maxpool(h)
        h = self.layer1(h)
        h_conv2 = h
        h = self.layer2(h)
        h_conv3 = h
        h = self.layer3(h)
        h_conv4 = h
        h = self.layer4(h)
        h_conv5 = h

        outputs = namedtuple("Outputs", ['relu1', 'conv2', 'conv3', 'conv4', 'conv5'])
        out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)

        return out