File size: 33,612 Bytes
19b3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 |
############################################################
# The contents below have been combined using files in the #
# following repository: #
# https://github.com/richzhang/PerceptualSimilarity #
############################################################
############################################################
# __init__.py #
############################################################
import numpy as np
from skimage.metrics import structural_similarity
import torch
from saicinpainting.utils import get_shape
class PerceptualLoss(torch.nn.Module):
def __init__(self, model='net-lin', net='alex', colorspace='rgb', model_path=None, spatial=False, use_gpu=True):
# VGG using our perceptually-learned weights (LPIPS metric)
# def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss
super(PerceptualLoss, self).__init__()
self.use_gpu = use_gpu
self.spatial = spatial
self.model = DistModel()
self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace,
model_path=model_path, spatial=self.spatial)
def forward(self, pred, target, normalize=True):
"""
Pred and target are Variables.
If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1]
If normalize is False, assumes the images are already between [-1,+1]
Inputs pred and target are Nx3xHxW
Output pytorch Variable N long
"""
if normalize:
target = 2 * target - 1
pred = 2 * pred - 1
return self.model(target, pred)
def normalize_tensor(in_feat, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True))
return in_feat / (norm_factor + eps)
def l2(p0, p1, range=255.):
return .5 * np.mean((p0 / range - p1 / range) ** 2)
def psnr(p0, p1, peak=255.):
return 10 * np.log10(peak ** 2 / np.mean((1. * p0 - 1. * p1) ** 2))
def dssim(p0, p1, range=255.):
return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2.
def rgb2lab(in_img, mean_cent=False):
from skimage import color
img_lab = color.rgb2lab(in_img)
if (mean_cent):
img_lab[:, :, 0] = img_lab[:, :, 0] - 50
return img_lab
def tensor2np(tensor_obj):
# change dimension of a tensor object into a numpy array
return tensor_obj[0].cpu().float().numpy().transpose((1, 2, 0))
def np2tensor(np_obj):
# change dimenion of np array into tensor array
return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
def tensor2tensorlab(image_tensor, to_norm=True, mc_only=False):
# image tensor to lab tensor
from skimage import color
img = tensor2im(image_tensor)
img_lab = color.rgb2lab(img)
if (mc_only):
img_lab[:, :, 0] = img_lab[:, :, 0] - 50
if (to_norm and not mc_only):
img_lab[:, :, 0] = img_lab[:, :, 0] - 50
img_lab = img_lab / 100.
return np2tensor(img_lab)
def tensorlab2tensor(lab_tensor, return_inbnd=False):
from skimage import color
import warnings
warnings.filterwarnings("ignore")
lab = tensor2np(lab_tensor) * 100.
lab[:, :, 0] = lab[:, :, 0] + 50
rgb_back = 255. * np.clip(color.lab2rgb(lab.astype('float')), 0, 1)
if (return_inbnd):
# convert back to lab, see if we match
lab_back = color.rgb2lab(rgb_back.astype('uint8'))
mask = 1. * np.isclose(lab_back, lab, atol=2.)
mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis])
return (im2tensor(rgb_back), mask)
else:
return im2tensor(rgb_back)
def rgb2lab(input):
from skimage import color
return color.rgb2lab(input / 255.)
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.):
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
return image_numpy.astype(imtype)
def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.):
return torch.Tensor((image / factor - cent)
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
def tensor2vec(vector_tensor):
return vector_tensor.data.cpu().numpy()[:, :, 0, 0]
def voc_ap(rec, prec, use_07_metric=False):
""" ap = voc_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the
VOC 07 11 point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.):
# def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.):
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
return image_numpy.astype(imtype)
def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.):
# def im2tensor(image, imtype=np.uint8, cent=1., factor=1.):
return torch.Tensor((image / factor - cent)
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
############################################################
# base_model.py #
############################################################
class BaseModel(torch.nn.Module):
def __init__(self):
super().__init__()
def name(self):
return 'BaseModel'
def initialize(self, use_gpu=True):
self.use_gpu = use_gpu
def forward(self):
pass
def get_image_paths(self):
pass
def optimize_parameters(self):
pass
def get_current_visuals(self):
return self.input
def get_current_errors(self):
return {}
def save(self, label):
pass
# helper saving function that can be used by subclasses
def save_network(self, network, path, network_label, epoch_label):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(path, save_filename)
torch.save(network.state_dict(), save_path)
# helper loading function that can be used by subclasses
def load_network(self, network, network_label, epoch_label):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
print('Loading network from %s' % save_path)
network.load_state_dict(torch.load(save_path, map_location='cpu'))
def update_learning_rate():
pass
def get_image_paths(self):
return self.image_paths
def save_done(self, flag=False):
np.save(os.path.join(self.save_dir, 'done_flag'), flag)
np.savetxt(os.path.join(self.save_dir, 'done_flag'), [flag, ], fmt='%i')
############################################################
# dist_model.py #
############################################################
import os
from collections import OrderedDict
from scipy.ndimage import zoom
from tqdm import tqdm
class DistModel(BaseModel):
def name(self):
return self.model_name
def initialize(self, model='net-lin', net='alex', colorspace='Lab', pnet_rand=False, pnet_tune=False,
model_path=None,
use_gpu=True, printNet=False, spatial=False,
is_train=False, lr=.0001, beta1=0.5, version='0.1'):
'''
INPUTS
model - ['net-lin'] for linearly calibrated network
['net'] for off-the-shelf network
['L2'] for L2 distance in Lab colorspace
['SSIM'] for ssim in RGB colorspace
net - ['squeeze','alex','vgg']
model_path - if None, will look in weights/[NET_NAME].pth
colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM
use_gpu - bool - whether or not to use a GPU
printNet - bool - whether or not to print network architecture out
spatial - bool - whether to output an array containing varying distances across spatial dimensions
spatial_shape - if given, output spatial shape. if None then spatial shape is determined automatically via spatial_factor (see below).
spatial_factor - if given, specifies upsampling factor relative to the largest spatial extent of a convolutional layer. if None then resized to size of input images.
spatial_order - spline order of filter for upsampling in spatial mode, by default 1 (bilinear).
is_train - bool - [True] for training mode
lr - float - initial learning rate
beta1 - float - initial momentum term for adam
version - 0.1 for latest, 0.0 was original (with a bug)
'''
BaseModel.initialize(self, use_gpu=use_gpu)
self.model = model
self.net = net
self.is_train = is_train
self.spatial = spatial
self.model_name = '%s [%s]' % (model, net)
if (self.model == 'net-lin'): # pretrained net + linear layer
self.net = PNetLin(pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net,
use_dropout=True, spatial=spatial, version=version, lpips=True)
kw = dict(map_location='cpu')
if (model_path is None):
import inspect
model_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), '..', '..', '..', 'models', 'lpips_models', f'{net}.pth'))
if (not is_train):
self.net.load_state_dict(torch.load(model_path, **kw), strict=False)
elif (self.model == 'net'): # pretrained network
self.net = PNetLin(pnet_rand=pnet_rand, pnet_type=net, lpips=False)
elif (self.model in ['L2', 'l2']):
self.net = L2(use_gpu=use_gpu, colorspace=colorspace) # not really a network, only for testing
self.model_name = 'L2'
elif (self.model in ['DSSIM', 'dssim', 'SSIM', 'ssim']):
self.net = DSSIM(use_gpu=use_gpu, colorspace=colorspace)
self.model_name = 'SSIM'
else:
raise ValueError("Model [%s] not recognized." % self.model)
self.trainable_parameters = list(self.net.parameters())
if self.is_train: # training mode
# extra network on top to go from distances (d0,d1) => predicted human judgment (h*)
self.rankLoss = BCERankingLoss()
self.trainable_parameters += list(self.rankLoss.net.parameters())
self.lr = lr
self.old_lr = lr
self.optimizer_net = torch.optim.Adam(self.trainable_parameters, lr=lr, betas=(beta1, 0.999))
else: # test mode
self.net.eval()
# if (use_gpu):
# self.net.to(gpu_ids[0])
# self.net = torch.nn.DataParallel(self.net, device_ids=gpu_ids)
# if (self.is_train):
# self.rankLoss = self.rankLoss.to(device=gpu_ids[0]) # just put this on GPU0
if (printNet):
print('---------- Networks initialized -------------')
print_network(self.net)
print('-----------------------------------------------')
def forward(self, in0, in1, retPerLayer=False):
''' Function computes the distance between image patches in0 and in1
INPUTS
in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1]
OUTPUT
computed distances between in0 and in1
'''
return self.net(in0, in1, retPerLayer=retPerLayer)
# ***** TRAINING FUNCTIONS *****
def optimize_parameters(self):
self.forward_train()
self.optimizer_net.zero_grad()
self.backward_train()
self.optimizer_net.step()
self.clamp_weights()
def clamp_weights(self):
for module in self.net.modules():
if (hasattr(module, 'weight') and module.kernel_size == (1, 1)):
module.weight.data = torch.clamp(module.weight.data, min=0)
def set_input(self, data):
self.input_ref = data['ref']
self.input_p0 = data['p0']
self.input_p1 = data['p1']
self.input_judge = data['judge']
# if (self.use_gpu):
# self.input_ref = self.input_ref.to(device=self.gpu_ids[0])
# self.input_p0 = self.input_p0.to(device=self.gpu_ids[0])
# self.input_p1 = self.input_p1.to(device=self.gpu_ids[0])
# self.input_judge = self.input_judge.to(device=self.gpu_ids[0])
# self.var_ref = Variable(self.input_ref, requires_grad=True)
# self.var_p0 = Variable(self.input_p0, requires_grad=True)
# self.var_p1 = Variable(self.input_p1, requires_grad=True)
def forward_train(self): # run forward pass
# print(self.net.module.scaling_layer.shift)
# print(torch.norm(self.net.module.net.slice1[0].weight).item(), torch.norm(self.net.module.lin0.model[1].weight).item())
assert False, "We shoud've not get here when using LPIPS as a metric"
self.d0 = self(self.var_ref, self.var_p0)
self.d1 = self(self.var_ref, self.var_p1)
self.acc_r = self.compute_accuracy(self.d0, self.d1, self.input_judge)
self.var_judge = Variable(1. * self.input_judge).view(self.d0.size())
self.loss_total = self.rankLoss(self.d0, self.d1, self.var_judge * 2. - 1.)
return self.loss_total
def backward_train(self):
torch.mean(self.loss_total).backward()
def compute_accuracy(self, d0, d1, judge):
''' d0, d1 are Variables, judge is a Tensor '''
d1_lt_d0 = (d1 < d0).cpu().data.numpy().flatten()
judge_per = judge.cpu().numpy().flatten()
return d1_lt_d0 * judge_per + (1 - d1_lt_d0) * (1 - judge_per)
def get_current_errors(self):
retDict = OrderedDict([('loss_total', self.loss_total.data.cpu().numpy()),
('acc_r', self.acc_r)])
for key in retDict.keys():
retDict[key] = np.mean(retDict[key])
return retDict
def get_current_visuals(self):
zoom_factor = 256 / self.var_ref.data.size()[2]
ref_img = tensor2im(self.var_ref.data)
p0_img = tensor2im(self.var_p0.data)
p1_img = tensor2im(self.var_p1.data)
ref_img_vis = zoom(ref_img, [zoom_factor, zoom_factor, 1], order=0)
p0_img_vis = zoom(p0_img, [zoom_factor, zoom_factor, 1], order=0)
p1_img_vis = zoom(p1_img, [zoom_factor, zoom_factor, 1], order=0)
return OrderedDict([('ref', ref_img_vis),
('p0', p0_img_vis),
('p1', p1_img_vis)])
def save(self, path, label):
if (self.use_gpu):
self.save_network(self.net.module, path, '', label)
else:
self.save_network(self.net, path, '', label)
self.save_network(self.rankLoss.net, path, 'rank', label)
def update_learning_rate(self, nepoch_decay):
lrd = self.lr / nepoch_decay
lr = self.old_lr - lrd
for param_group in self.optimizer_net.param_groups:
param_group['lr'] = lr
print('update lr [%s] decay: %f -> %f' % (type, self.old_lr, lr))
self.old_lr = lr
def score_2afc_dataset(data_loader, func, name=''):
''' Function computes Two Alternative Forced Choice (2AFC) score using
distance function 'func' in dataset 'data_loader'
INPUTS
data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside
func - callable distance function - calling d=func(in0,in1) should take 2
pytorch tensors with shape Nx3xXxY, and return numpy array of length N
OUTPUTS
[0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators
[1] - dictionary with following elements
d0s,d1s - N arrays containing distances between reference patch to perturbed patches
gts - N array in [0,1], preferred patch selected by human evaluators
(closer to "0" for left patch p0, "1" for right patch p1,
"0.6" means 60pct people preferred right patch, 40pct preferred left)
scores - N array in [0,1], corresponding to what percentage function agreed with humans
CONSTS
N - number of test triplets in data_loader
'''
d0s = []
d1s = []
gts = []
for data in tqdm(data_loader.load_data(), desc=name):
d0s += func(data['ref'], data['p0']).data.cpu().numpy().flatten().tolist()
d1s += func(data['ref'], data['p1']).data.cpu().numpy().flatten().tolist()
gts += data['judge'].cpu().numpy().flatten().tolist()
d0s = np.array(d0s)
d1s = np.array(d1s)
gts = np.array(gts)
scores = (d0s < d1s) * (1. - gts) + (d1s < d0s) * gts + (d1s == d0s) * .5
return (np.mean(scores), dict(d0s=d0s, d1s=d1s, gts=gts, scores=scores))
def score_jnd_dataset(data_loader, func, name=''):
''' Function computes JND score using distance function 'func' in dataset 'data_loader'
INPUTS
data_loader - CustomDatasetDataLoader object - contains a JNDDataset inside
func - callable distance function - calling d=func(in0,in1) should take 2
pytorch tensors with shape Nx3xXxY, and return pytorch array of length N
OUTPUTS
[0] - JND score in [0,1], mAP score (area under precision-recall curve)
[1] - dictionary with following elements
ds - N array containing distances between two patches shown to human evaluator
sames - N array containing fraction of people who thought the two patches were identical
CONSTS
N - number of test triplets in data_loader
'''
ds = []
gts = []
for data in tqdm(data_loader.load_data(), desc=name):
ds += func(data['p0'], data['p1']).data.cpu().numpy().tolist()
gts += data['same'].cpu().numpy().flatten().tolist()
sames = np.array(gts)
ds = np.array(ds)
sorted_inds = np.argsort(ds)
ds_sorted = ds[sorted_inds]
sames_sorted = sames[sorted_inds]
TPs = np.cumsum(sames_sorted)
FPs = np.cumsum(1 - sames_sorted)
FNs = np.sum(sames_sorted) - TPs
precs = TPs / (TPs + FPs)
recs = TPs / (TPs + FNs)
score = voc_ap(recs, precs)
return (score, dict(ds=ds, sames=sames))
############################################################
# networks_basic.py #
############################################################
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
def spatial_average(in_tens, keepdim=True):
return in_tens.mean([2, 3], keepdim=keepdim)
def upsample(in_tens, out_H=64): # assumes scale factor is same for H and W
in_H = in_tens.shape[2]
scale_factor = 1. * out_H / in_H
return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens)
# Learned perceptual metric
class PNetLin(nn.Module):
def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False,
version='0.1', lpips=True):
super(PNetLin, self).__init__()
self.pnet_type = pnet_type
self.pnet_tune = pnet_tune
self.pnet_rand = pnet_rand
self.spatial = spatial
self.lpips = lpips
self.version = version
self.scaling_layer = ScalingLayer()
if (self.pnet_type in ['vgg', 'vgg16']):
net_type = vgg16
self.chns = [64, 128, 256, 512, 512]
elif (self.pnet_type == 'alex'):
net_type = alexnet
self.chns = [64, 192, 384, 256, 256]
elif (self.pnet_type == 'squeeze'):
net_type = squeezenet
self.chns = [64, 128, 256, 384, 384, 512, 512]
self.L = len(self.chns)
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
if (lpips):
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
if (self.pnet_type == 'squeeze'): # 7 layers for squeezenet
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
self.lins += [self.lin5, self.lin6]
def forward(self, in0, in1, retPerLayer=False):
# v0.0 - original release had a bug, where input was not scaled
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version == '0.1' else (
in0, in1)
outs0, outs1 = self.net(in0_input), self.net(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(self.L):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
if (self.lpips):
if (self.spatial):
res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)]
else:
res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)]
else:
if (self.spatial):
res = [upsample(diffs[kk].sum(dim=1, keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)]
else:
res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)]
val = res[0]
for l in range(1, self.L):
val += res[l]
if (retPerLayer):
return (val, res)
else:
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
''' A single linear layer which does a 1x1 conv '''
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = [nn.Dropout(), ] if (use_dropout) else []
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
self.model = nn.Sequential(*layers)
class Dist2LogitLayer(nn.Module):
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
def __init__(self, chn_mid=32, use_sigmoid=True):
super(Dist2LogitLayer, self).__init__()
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True), ]
layers += [nn.LeakyReLU(0.2, True), ]
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True), ]
layers += [nn.LeakyReLU(0.2, True), ]
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True), ]
if (use_sigmoid):
layers += [nn.Sigmoid(), ]
self.model = nn.Sequential(*layers)
def forward(self, d0, d1, eps=0.1):
return self.model(torch.cat((d0, d1, d0 - d1, d0 / (d1 + eps), d1 / (d0 + eps)), dim=1))
class BCERankingLoss(nn.Module):
def __init__(self, chn_mid=32):
super(BCERankingLoss, self).__init__()
self.net = Dist2LogitLayer(chn_mid=chn_mid)
# self.parameters = list(self.net.parameters())
self.loss = torch.nn.BCELoss()
def forward(self, d0, d1, judge):
per = (judge + 1.) / 2.
self.logit = self.net(d0, d1)
return self.loss(self.logit, per)
# L2, DSSIM metrics
class FakeNet(nn.Module):
def __init__(self, use_gpu=True, colorspace='Lab'):
super(FakeNet, self).__init__()
self.use_gpu = use_gpu
self.colorspace = colorspace
class L2(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert (in0.size()[0] == 1) # currently only supports batchSize 1
if (self.colorspace == 'RGB'):
(N, C, X, Y) = in0.size()
value = torch.mean(torch.mean(torch.mean((in0 - in1) ** 2, dim=1).view(N, 1, X, Y), dim=2).view(N, 1, 1, Y),
dim=3).view(N)
return value
elif (self.colorspace == 'Lab'):
value = l2(tensor2np(tensor2tensorlab(in0.data, to_norm=False)),
tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float')
ret_var = Variable(torch.Tensor((value,)))
# if (self.use_gpu):
# ret_var = ret_var.cuda()
return ret_var
class DSSIM(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert (in0.size()[0] == 1) # currently only supports batchSize 1
if (self.colorspace == 'RGB'):
value = dssim(1. * tensor2im(in0.data), 1. * tensor2im(in1.data), range=255.).astype('float')
elif (self.colorspace == 'Lab'):
value = dssim(tensor2np(tensor2tensorlab(in0.data, to_norm=False)),
tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float')
ret_var = Variable(torch.Tensor((value,)))
# if (self.use_gpu):
# ret_var = ret_var.cuda()
return ret_var
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('Network', net)
print('Total number of parameters: %d' % num_params)
############################################################
# pretrained_networks.py #
############################################################
from collections import namedtuple
import torch
from torchvision import models as tv
class squeezenet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(squeezenet, self).__init__()
pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.slice6 = torch.nn.Sequential()
self.slice7 = torch.nn.Sequential()
self.N_slices = 7
for x in range(2):
self.slice1.add_module(str(x), pretrained_features[x])
for x in range(2, 5):
self.slice2.add_module(str(x), pretrained_features[x])
for x in range(5, 8):
self.slice3.add_module(str(x), pretrained_features[x])
for x in range(8, 10):
self.slice4.add_module(str(x), pretrained_features[x])
for x in range(10, 11):
self.slice5.add_module(str(x), pretrained_features[x])
for x in range(11, 12):
self.slice6.add_module(str(x), pretrained_features[x])
for x in range(12, 13):
self.slice7.add_module(str(x), pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1 = h
h = self.slice2(h)
h_relu2 = h
h = self.slice3(h)
h_relu3 = h
h = self.slice4(h)
h_relu4 = h
h = self.slice5(h)
h_relu5 = h
h = self.slice6(h)
h_relu6 = h
h = self.slice7(h)
h_relu7 = h
vgg_outputs = namedtuple("SqueezeOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5', 'relu6', 'relu7'])
out = vgg_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7)
return out
class alexnet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(alexnet, self).__init__()
alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(2):
self.slice1.add_module(str(x), alexnet_pretrained_features[x])
for x in range(2, 5):
self.slice2.add_module(str(x), alexnet_pretrained_features[x])
for x in range(5, 8):
self.slice3.add_module(str(x), alexnet_pretrained_features[x])
for x in range(8, 10):
self.slice4.add_module(str(x), alexnet_pretrained_features[x])
for x in range(10, 12):
self.slice5.add_module(str(x), alexnet_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1 = h
h = self.slice2(h)
h_relu2 = h
h = self.slice3(h)
h_relu3 = h
h = self.slice4(h)
h_relu4 = h
h = self.slice5(h)
h_relu5 = h
alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5'])
out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
return out
class vgg16(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(vgg16, self).__init__()
vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(23, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1_2 = h
h = self.slice2(h)
h_relu2_2 = h
h = self.slice3(h)
h_relu3_3 = h
h = self.slice4(h)
h_relu4_3 = h
h = self.slice5(h)
h_relu5_3 = h
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
return out
class resnet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True, num=18):
super(resnet, self).__init__()
if (num == 18):
self.net = tv.resnet18(pretrained=pretrained)
elif (num == 34):
self.net = tv.resnet34(pretrained=pretrained)
elif (num == 50):
self.net = tv.resnet50(pretrained=pretrained)
elif (num == 101):
self.net = tv.resnet101(pretrained=pretrained)
elif (num == 152):
self.net = tv.resnet152(pretrained=pretrained)
self.N_slices = 5
self.conv1 = self.net.conv1
self.bn1 = self.net.bn1
self.relu = self.net.relu
self.maxpool = self.net.maxpool
self.layer1 = self.net.layer1
self.layer2 = self.net.layer2
self.layer3 = self.net.layer3
self.layer4 = self.net.layer4
def forward(self, X):
h = self.conv1(X)
h = self.bn1(h)
h = self.relu(h)
h_relu1 = h
h = self.maxpool(h)
h = self.layer1(h)
h_conv2 = h
h = self.layer2(h)
h_conv3 = h
h = self.layer3(h)
h_conv4 = h
h = self.layer4(h)
h_conv5 = h
outputs = namedtuple("Outputs", ['relu1', 'conv2', 'conv3', 'conv4', 'conv5'])
out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
return out
|