|
|
|
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs |
|
|
|
The FID metric calculates the distance between two distributions of images. |
|
Typically, we have summary statistics (mean & covariance matrix) of one |
|
of these distributions, while the 2nd distribution is given by a GAN. |
|
|
|
When run as a stand-alone program, it compares the distribution of |
|
images that are stored as PNG/JPEG at a specified location with a |
|
distribution given by summary statistics (in pickle format). |
|
|
|
The FID is calculated by assuming that X_1 and X_2 are the activations of |
|
the pool_3 layer of the inception net for generated samples and real world |
|
samples respectively. |
|
|
|
See --help to see further details. |
|
|
|
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead |
|
of Tensorflow |
|
|
|
Copyright 2018 Institute of Bioinformatics, JKU Linz |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
""" |
|
import os |
|
import pathlib |
|
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from imageio import imread |
|
from PIL import Image, JpegImagePlugin |
|
from scipy import linalg |
|
from torch.nn.functional import adaptive_avg_pool2d |
|
from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor |
|
|
|
try: |
|
from tqdm import tqdm |
|
except ImportError: |
|
|
|
def tqdm(x): return x |
|
|
|
try: |
|
from .inception import InceptionV3 |
|
except ModuleNotFoundError: |
|
from inception import InceptionV3 |
|
|
|
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) |
|
parser.add_argument('path', type=str, nargs=2, |
|
help=('Path to the generated images or ' |
|
'to .npz statistic files')) |
|
parser.add_argument('--batch-size', type=int, default=50, |
|
help='Batch size to use') |
|
parser.add_argument('--dims', type=int, default=2048, |
|
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), |
|
help=('Dimensionality of Inception features to use. ' |
|
'By default, uses pool3 features')) |
|
parser.add_argument('-c', '--gpu', default='', type=str, |
|
help='GPU to use (leave blank for CPU only)') |
|
parser.add_argument('--resize', default=256) |
|
|
|
transform = Compose([Resize(256), CenterCrop(256), ToTensor()]) |
|
|
|
|
|
def get_activations(files, model, batch_size=50, dims=2048, |
|
cuda=False, verbose=False, keep_size=False): |
|
"""Calculates the activations of the pool_3 layer for all images. |
|
|
|
Params: |
|
-- files : List of image files paths |
|
-- model : Instance of inception model |
|
-- batch_size : Batch size of images for the model to process at once. |
|
Make sure that the number of samples is a multiple of |
|
the batch size, otherwise some samples are ignored. This |
|
behavior is retained to match the original FID score |
|
implementation. |
|
-- dims : Dimensionality of features returned by Inception |
|
-- cuda : If set to True, use GPU |
|
-- verbose : If set to True and parameter out_step is given, the number |
|
of calculated batches is reported. |
|
Returns: |
|
-- A numpy array of dimension (num images, dims) that contains the |
|
activations of the given tensor when feeding inception with the |
|
query tensor. |
|
""" |
|
model.eval() |
|
|
|
if len(files) % batch_size != 0: |
|
print(('Warning: number of images is not a multiple of the ' |
|
'batch size. Some samples are going to be ignored.')) |
|
if batch_size > len(files): |
|
print(('Warning: batch size is bigger than the data size. ' |
|
'Setting batch size to data size')) |
|
batch_size = len(files) |
|
|
|
n_batches = len(files) // batch_size |
|
n_used_imgs = n_batches * batch_size |
|
|
|
pred_arr = np.empty((n_used_imgs, dims)) |
|
|
|
for i in tqdm(range(n_batches)): |
|
if verbose: |
|
print('\rPropagating batch %d/%d' % (i + 1, n_batches), |
|
end='', flush=True) |
|
start = i * batch_size |
|
end = start + batch_size |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t = transform if not keep_size else ToTensor() |
|
|
|
if isinstance(files[0], pathlib.PosixPath): |
|
images = [t(Image.open(str(f))) for f in files[start:end]] |
|
|
|
elif isinstance(files[0], Image.Image): |
|
images = [t(f) for f in files[start:end]] |
|
|
|
else: |
|
raise ValueError(f"Unknown data type for image: {type(files[0])}") |
|
|
|
batch = torch.stack(images) |
|
|
|
if cuda: |
|
batch = batch.cuda() |
|
|
|
pred = model(batch)[0] |
|
|
|
|
|
|
|
if pred.shape[2] != 1 or pred.shape[3] != 1: |
|
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) |
|
|
|
pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1) |
|
|
|
if verbose: |
|
print(' done') |
|
|
|
return pred_arr |
|
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
"""Numpy implementation of the Frechet Distance. |
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) |
|
and X_2 ~ N(mu_2, C_2) is |
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). |
|
|
|
Stable version by Dougal J. Sutherland. |
|
|
|
Params: |
|
-- mu1 : Numpy array containing the activations of a layer of the |
|
inception net (like returned by the function 'get_predictions') |
|
for generated samples. |
|
-- mu2 : The sample mean over activations, precalculated on an |
|
representative data set. |
|
-- sigma1: The covariance matrix over activations for generated samples. |
|
-- sigma2: The covariance matrix over activations, precalculated on an |
|
representative data set. |
|
|
|
Returns: |
|
-- : The Frechet Distance. |
|
""" |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, \ |
|
'Training and test mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, \ |
|
'Training and test covariances have different dimensions' |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ('fid calculation produces singular product; ' |
|
'adding %s to diagonal of cov estimates') % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
|
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-2): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError('Imaginary component {}'.format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return (diff.dot(diff) + np.trace(sigma1) + |
|
np.trace(sigma2) - 2 * tr_covmean) |
|
|
|
|
|
def calculate_activation_statistics(files, model, batch_size=50, |
|
dims=2048, cuda=False, verbose=False, keep_size=False): |
|
"""Calculation of the statistics used by the FID. |
|
Params: |
|
-- files : List of image files paths |
|
-- model : Instance of inception model |
|
-- batch_size : The images numpy array is split into batches with |
|
batch size batch_size. A reasonable batch size |
|
depends on the hardware. |
|
-- dims : Dimensionality of features returned by Inception |
|
-- cuda : If set to True, use GPU |
|
-- verbose : If set to True and parameter out_step is given, the |
|
number of calculated batches is reported. |
|
Returns: |
|
-- mu : The mean over samples of the activations of the pool_3 layer of |
|
the inception model. |
|
-- sigma : The covariance matrix of the activations of the pool_3 layer of |
|
the inception model. |
|
""" |
|
act = get_activations(files, model, batch_size, dims, cuda, verbose, keep_size=keep_size) |
|
mu = np.mean(act, axis=0) |
|
sigma = np.cov(act, rowvar=False) |
|
return mu, sigma |
|
|
|
|
|
def _compute_statistics_of_path(path, model, batch_size, dims, cuda): |
|
if path.endswith('.npz'): |
|
f = np.load(path) |
|
m, s = f['mu'][:], f['sigma'][:] |
|
f.close() |
|
else: |
|
path = pathlib.Path(path) |
|
files = list(path.glob('*.jpg')) + list(path.glob('*.png')) |
|
m, s = calculate_activation_statistics(files, model, batch_size, |
|
dims, cuda) |
|
|
|
return m, s |
|
|
|
|
|
def _compute_statistics_of_images(images, model, batch_size, dims, cuda, keep_size=False): |
|
if isinstance(images, list): |
|
m, s = calculate_activation_statistics(images, model, batch_size, |
|
dims, cuda, keep_size=keep_size) |
|
|
|
return m, s |
|
|
|
else: |
|
raise ValueError |
|
|
|
|
|
def calculate_fid_given_paths(paths, batch_size, cuda, dims): |
|
"""Calculates the FID of two paths""" |
|
for p in paths: |
|
if not os.path.exists(p): |
|
raise RuntimeError('Invalid path: %s' % p) |
|
|
|
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] |
|
|
|
model = InceptionV3([block_idx]) |
|
if cuda: |
|
model.cuda() |
|
|
|
m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, |
|
dims, cuda) |
|
m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, |
|
dims, cuda) |
|
fid_value = calculate_frechet_distance(m1, s1, m2, s2) |
|
|
|
return fid_value |
|
|
|
|
|
def calculate_fid_given_images(images, batch_size, cuda, dims, use_globals=False, keep_size=False): |
|
if use_globals: |
|
global FID_MODEL |
|
|
|
for imgs in images: |
|
if isinstance(imgs, list) and isinstance(imgs[0], (Image.Image, JpegImagePlugin.JpegImageFile)): |
|
pass |
|
else: |
|
raise RuntimeError('Invalid images') |
|
|
|
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] |
|
|
|
if 'FID_MODEL' not in globals() or not use_globals: |
|
model = InceptionV3([block_idx]) |
|
if cuda: |
|
model.cuda() |
|
|
|
if use_globals: |
|
FID_MODEL = model |
|
|
|
else: |
|
model = FID_MODEL |
|
|
|
m1, s1 = _compute_statistics_of_images(images[0], model, batch_size, |
|
dims, cuda, keep_size=False) |
|
m2, s2 = _compute_statistics_of_images(images[1], model, batch_size, |
|
dims, cuda, keep_size=False) |
|
fid_value = calculate_frechet_distance(m1, s1, m2, s2) |
|
return fid_value |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parser.parse_args() |
|
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu |
|
|
|
fid_value = calculate_fid_given_paths(args.path, |
|
args.batch_size, |
|
args.gpu != '', |
|
args.dims) |
|
print('FID: ', fid_value) |
|
|