|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
import random |
|
import warnings |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
LoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel |
|
from diffusers.models.attention_processor import ( |
|
AttnProcessor2_0, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.import_utils import is_invisible_watermark_available |
|
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
if is_invisible_watermark_available(): |
|
from diffusers.pipelines.stable_diffusion_xl.watermark import ( |
|
StableDiffusionXLWatermarker, |
|
) |
|
|
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
""" |
|
|
|
|
|
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3): |
|
x_coord = torch.arange(kernel_size) |
|
gaussian_1d = torch.exp( |
|
-((x_coord - (kernel_size - 1) / 2) ** 2) / (2 * sigma**2) |
|
) |
|
gaussian_1d = gaussian_1d / gaussian_1d.sum() |
|
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :] |
|
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1) |
|
|
|
return kernel |
|
|
|
|
|
def gaussian_filter(latents, kernel_size=3, sigma=1.0): |
|
channels = latents.shape[1] |
|
kernel = gaussian_kernel(kernel_size, sigma, channels).to( |
|
latents.device, latents.dtype |
|
) |
|
blurred_latents = F.conv2d( |
|
latents, kernel, padding=kernel_size // 2, groups=channels |
|
) |
|
|
|
return blurred_latents |
|
|
|
|
|
class DemoFusionSDXLControlNetPipeline( |
|
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin |
|
): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): |
|
Second frozen text-encoder |
|
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
tokenizer_2 ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): |
|
Provides additional conditioning to the `unet` during the denoising process. If you set multiple |
|
ControlNets as a list, the outputs from each ControlNet are added together to create one combined |
|
additional conditioning. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): |
|
Whether the negative prompt embeddings should always be set to 0. Also see the config of |
|
`stabilityai/stable-diffusion-xl-base-1-0`. |
|
add_watermarker (`bool`, *optional*): |
|
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to |
|
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no |
|
watermarker is used. |
|
""" |
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
tokenizer_2: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
controlnet: Union[ |
|
ControlNetModel, |
|
List[ControlNetModel], |
|
Tuple[ControlNetModel], |
|
MultiControlNetModel, |
|
], |
|
scheduler: KarrasDiffusionSchedulers, |
|
force_zeros_for_empty_prompt: bool = True, |
|
add_watermarker: Optional[bool] = None, |
|
image_encoder=None, |
|
feature_extractor=None, |
|
): |
|
super().__init__() |
|
|
|
if isinstance(controlnet, (list, tuple)): |
|
controlnet = MultiControlNetModel(controlnet) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True |
|
) |
|
self.control_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, |
|
do_convert_rgb=True, |
|
do_normalize=False, |
|
) |
|
add_watermarker = ( |
|
add_watermarker |
|
if add_watermarker is not None |
|
else is_invisible_watermark_available() |
|
) |
|
|
|
if add_watermarker: |
|
self.watermark = StableDiffusionXLWatermarker() |
|
else: |
|
self.watermark = None |
|
|
|
self.register_to_config( |
|
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt |
|
) |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
prompt_2: Optional[str] = None, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = ( |
|
[self.tokenizer, self.tokenizer_2] |
|
if self.tokenizer is not None |
|
else [self.tokenizer_2] |
|
) |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] |
|
if self.text_encoder is not None |
|
else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
|
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip( |
|
prompts, tokenizers, text_encoders |
|
): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer( |
|
prompt, padding="longest", return_tensors="pt" |
|
).input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[ |
|
-1 |
|
] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = tokenizer.batch_decode( |
|
untruncated_ids[:, tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = ( |
|
negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
) |
|
if ( |
|
do_classifier_free_guidance |
|
and negative_prompt_embeds is None |
|
and zero_out_negative_prompt |
|
): |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
negative_prompt_embeds_list = [] |
|
for negative_prompt, tokenizer, text_encoder in zip( |
|
uncond_tokens, tokenizers, text_encoders |
|
): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
negative_prompt = self.maybe_convert_prompt( |
|
negative_prompt, tokenizer |
|
) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.to( |
|
dtype=self.text_encoder_2.dtype, device=device |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds.repeat( |
|
1, num_images_per_prompt, 1 |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat( |
|
1, num_images_per_prompt |
|
).view(bs_embed * num_images_per_prompt, -1) |
|
if do_classifier_free_guidance: |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat( |
|
1, num_images_per_prompt |
|
).view(bs_embed * num_images_per_prompt, -1) |
|
|
|
return ( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
image, |
|
callback_steps, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
controlnet_conditioning_scale=1.0, |
|
control_guidance_start=0.0, |
|
control_guidance_end=1.0, |
|
): |
|
if (callback_steps is None) or ( |
|
callback_steps is not None |
|
and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and ( |
|
not isinstance(prompt, str) and not isinstance(prompt, list) |
|
): |
|
raise ValueError( |
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" |
|
) |
|
elif prompt_2 is not None and ( |
|
not isinstance(prompt_2, str) and not isinstance(prompt_2, list) |
|
): |
|
raise ValueError( |
|
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" |
|
) |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
|
|
|
|
if isinstance(self.controlnet, MultiControlNetModel): |
|
if isinstance(prompt, list): |
|
logger.warning( |
|
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" |
|
" prompts. The conditionings will be fixed across the prompts." |
|
) |
|
|
|
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( |
|
self.controlnet, torch._dynamo.eval_frame.OptimizedModule |
|
) |
|
if ( |
|
isinstance(self.controlnet, ControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, ControlNetModel) |
|
): |
|
self.check_image(image, prompt, prompt_embeds) |
|
elif ( |
|
isinstance(self.controlnet, MultiControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) |
|
): |
|
if not isinstance(image, list): |
|
raise TypeError("For multiple controlnets: `image` must be type `list`") |
|
|
|
|
|
|
|
elif any(isinstance(i, list) for i in image): |
|
raise ValueError( |
|
"A single batch of multiple conditionings are supported at the moment." |
|
) |
|
elif len(image) != len(self.controlnet.nets): |
|
raise ValueError( |
|
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." |
|
) |
|
|
|
for image_ in image: |
|
self.check_image(image_, prompt, prompt_embeds) |
|
else: |
|
assert False |
|
|
|
|
|
if ( |
|
isinstance(self.controlnet, ControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, ControlNetModel) |
|
): |
|
if not isinstance(controlnet_conditioning_scale, float): |
|
raise TypeError( |
|
"For single controlnet: `controlnet_conditioning_scale` must be type `float`." |
|
) |
|
elif ( |
|
isinstance(self.controlnet, MultiControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) |
|
): |
|
if isinstance(controlnet_conditioning_scale, list): |
|
if any(isinstance(i, list) for i in controlnet_conditioning_scale): |
|
raise ValueError( |
|
"A single batch of multiple conditionings are supported at the moment." |
|
) |
|
elif isinstance(controlnet_conditioning_scale, list) and len( |
|
controlnet_conditioning_scale |
|
) != len(self.controlnet.nets): |
|
raise ValueError( |
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" |
|
" the same length as the number of controlnets" |
|
) |
|
else: |
|
assert False |
|
|
|
if not isinstance(control_guidance_start, (tuple, list)): |
|
control_guidance_start = [control_guidance_start] |
|
|
|
if not isinstance(control_guidance_end, (tuple, list)): |
|
control_guidance_end = [control_guidance_end] |
|
|
|
if len(control_guidance_start) != len(control_guidance_end): |
|
raise ValueError( |
|
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." |
|
) |
|
|
|
if isinstance(self.controlnet, MultiControlNetModel): |
|
if len(control_guidance_start) != len(self.controlnet.nets): |
|
raise ValueError( |
|
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." |
|
) |
|
|
|
for start, end in zip(control_guidance_start, control_guidance_end): |
|
if start >= end: |
|
raise ValueError( |
|
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." |
|
) |
|
if start < 0.0: |
|
raise ValueError( |
|
f"control guidance start: {start} can't be smaller than 0." |
|
) |
|
if end > 1.0: |
|
raise ValueError( |
|
f"control guidance end: {end} can't be larger than 1.0." |
|
) |
|
|
|
|
|
def check_image(self, image, prompt, prompt_embeds): |
|
image_is_pil = isinstance(image, PIL.Image.Image) |
|
image_is_tensor = isinstance(image, torch.Tensor) |
|
image_is_np = isinstance(image, np.ndarray) |
|
image_is_pil_list = isinstance(image, list) and isinstance( |
|
image[0], PIL.Image.Image |
|
) |
|
image_is_tensor_list = isinstance(image, list) and isinstance( |
|
image[0], torch.Tensor |
|
) |
|
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) |
|
|
|
if ( |
|
not image_is_pil |
|
and not image_is_tensor |
|
and not image_is_np |
|
and not image_is_pil_list |
|
and not image_is_tensor_list |
|
and not image_is_np_list |
|
): |
|
raise TypeError( |
|
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" |
|
) |
|
|
|
if image_is_pil: |
|
image_batch_size = 1 |
|
else: |
|
image_batch_size = len(image) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
prompt_batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
prompt_batch_size = len(prompt) |
|
elif prompt_embeds is not None: |
|
prompt_batch_size = prompt_embeds.shape[0] |
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size: |
|
raise ValueError( |
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" |
|
) |
|
|
|
|
|
def prepare_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
image = self.control_image_processor.preprocess( |
|
image, height=height, width=width |
|
).to(dtype=torch.float32) |
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype |
|
) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def _get_add_time_ids( |
|
self, original_size, crops_coords_top_left, target_size, dtype |
|
): |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
|
|
passed_add_embed_dim = ( |
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) |
|
+ self.text_encoder_2.config.projection_dim |
|
) |
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features |
|
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
) |
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) |
|
return add_time_ids |
|
|
|
def get_views(self, height, width, window_size=128, stride=64, random_jitter=False): |
|
|
|
|
|
height //= self.vae_scale_factor |
|
width //= self.vae_scale_factor |
|
num_blocks_height = ( |
|
int((height - window_size) / stride - 1e-6) + 2 |
|
if height > window_size |
|
else 1 |
|
) |
|
num_blocks_width = ( |
|
int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1 |
|
) |
|
total_num_blocks = int(num_blocks_height * num_blocks_width) |
|
views = [] |
|
for i in range(total_num_blocks): |
|
h_start = int((i // num_blocks_width) * stride) |
|
h_end = h_start + window_size |
|
w_start = int((i % num_blocks_width) * stride) |
|
w_end = w_start + window_size |
|
|
|
if h_end > height: |
|
h_start = int(h_start + height - h_end) |
|
h_end = int(height) |
|
if w_end > width: |
|
w_start = int(w_start + width - w_end) |
|
w_end = int(width) |
|
if h_start < 0: |
|
h_end = int(h_end - h_start) |
|
h_start = 0 |
|
if w_start < 0: |
|
w_end = int(w_end - w_start) |
|
w_start = 0 |
|
|
|
if random_jitter: |
|
jitter_range = (window_size - stride) // 4 |
|
w_jitter = 0 |
|
h_jitter = 0 |
|
if (w_start != 0) and (w_end != width): |
|
w_jitter = random.randint(-jitter_range, jitter_range) |
|
elif (w_start == 0) and (w_end != width): |
|
w_jitter = random.randint(-jitter_range, 0) |
|
elif (w_start != 0) and (w_end == width): |
|
w_jitter = random.randint(0, jitter_range) |
|
if (h_start != 0) and (h_end != height): |
|
h_jitter = random.randint(-jitter_range, jitter_range) |
|
elif (h_start == 0) and (h_end != height): |
|
h_jitter = random.randint(-jitter_range, 0) |
|
elif (h_start != 0) and (h_end == height): |
|
h_jitter = random.randint(0, jitter_range) |
|
h_start += h_jitter + jitter_range |
|
h_end += h_jitter + jitter_range |
|
w_start += w_jitter + jitter_range |
|
w_end += w_jitter + jitter_range |
|
|
|
views.append((h_start, h_end, w_start, w_end)) |
|
return views |
|
|
|
def tiled_decode(self, latents, current_height, current_width): |
|
sample_size = self.unet.config.sample_size |
|
core_size = self.unet.config.sample_size // 4 |
|
core_stride = core_size |
|
pad_size = self.unet.config.sample_size // 8 * 3 |
|
decoder_view_batch_size = 1 |
|
|
|
if self.lowvram: |
|
core_stride = core_size // 2 |
|
pad_size = core_size |
|
|
|
views = self.get_views( |
|
current_height, current_width, stride=core_stride, window_size=core_size |
|
) |
|
views_batch = [ |
|
views[i : i + decoder_view_batch_size] |
|
for i in range(0, len(views), decoder_view_batch_size) |
|
] |
|
latents_ = F.pad( |
|
latents, (pad_size, pad_size, pad_size, pad_size), "constant", 0 |
|
) |
|
image = torch.zeros(latents.size(0), 3, current_height, current_width).to( |
|
latents.device |
|
) |
|
count = torch.zeros_like(image).to(latents.device) |
|
|
|
with self.progress_bar(total=len(views_batch)) as progress_bar: |
|
for j, batch_view in enumerate(views_batch): |
|
vb_size = len(batch_view) |
|
latents_for_view = torch.cat( |
|
[ |
|
latents_[ |
|
:, |
|
:, |
|
h_start : h_end + pad_size * 2, |
|
w_start : w_end + pad_size * 2, |
|
] |
|
for h_start, h_end, w_start, w_end in batch_view |
|
] |
|
).to(self.vae.device) |
|
image_patch = self.vae.decode( |
|
latents_for_view / self.vae.config.scaling_factor, return_dict=False |
|
)[0] |
|
h_start, h_end, w_start, w_end = views[j] |
|
h_start, h_end, w_start, w_end = ( |
|
h_start * self.vae_scale_factor, |
|
h_end * self.vae_scale_factor, |
|
w_start * self.vae_scale_factor, |
|
w_end * self.vae_scale_factor, |
|
) |
|
p_h_start, p_h_end, p_w_start, p_w_end = ( |
|
pad_size * self.vae_scale_factor, |
|
image_patch.size(2) - pad_size * self.vae_scale_factor, |
|
pad_size * self.vae_scale_factor, |
|
image_patch.size(3) - pad_size * self.vae_scale_factor, |
|
) |
|
image[:, :, h_start:h_end, w_start:w_end] += image_patch[ |
|
:, :, p_h_start:p_h_end, p_w_start:p_w_end |
|
].to(latents.device) |
|
count[:, :, h_start:h_end, w_start:w_end] += 1 |
|
progress_bar.update() |
|
image = image / count |
|
|
|
return image |
|
|
|
|
|
def upcast_vae(self): |
|
dtype = self.vae.dtype |
|
self.vae.to(dtype=torch.float32) |
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
), |
|
) |
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(dtype) |
|
self.vae.decoder.conv_in.to(dtype) |
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
condition_image: PipelineImageInput = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
guess_mode: bool = False, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
original_size: Tuple[int, int] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Tuple[int, int] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
|
|
image_lr: Optional[torch.FloatTensor] = None, |
|
view_batch_size: int = 16, |
|
multi_decoder: bool = True, |
|
stride: Optional[int] = 64, |
|
cosine_scale_1: Optional[float] = 3.0, |
|
cosine_scale_2: Optional[float] = 1.0, |
|
cosine_scale_3: Optional[float] = 1.0, |
|
sigma: Optional[float] = 1.0, |
|
show_image: bool = False, |
|
lowvram: bool = False, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders. |
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is |
|
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be |
|
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height |
|
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in |
|
`init`, images must be passed as a list such that each element of the list can be correctly batched for |
|
input to a single ControlNet. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` |
|
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, pooled text embeddings are generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt |
|
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set |
|
the corresponding scale as a list. |
|
guess_mode (`bool`, *optional*, defaults to `False`): |
|
The ControlNet encoder tries to recognize the content of the input image even if you remove all |
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. |
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
The percentage of total steps at which the ControlNet starts applying. |
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The percentage of total steps at which the ControlNet stops applying. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a target image resolution. It should be as same |
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
################### DemoFusion specific parameters #################### |
|
image_lr (`torch.FloatTensor`, *optional*, , defaults to None): |
|
Low-resolution image input for upscaling. If provided, DemoFusion will encode it as the initial latent representation. |
|
view_batch_size (`int`, defaults to 16): |
|
The batch size for multiple denoising paths. Typically, a larger batch size can result in higher |
|
efficiency but comes with increased GPU memory requirements. |
|
multi_decoder (`bool`, defaults to True): |
|
Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072, |
|
a tiled decoder becomes necessary. |
|
stride (`int`, defaults to 64): |
|
The stride of moving local patches. A smaller stride is better for alleviating seam issues, |
|
but it also introduces additional computational overhead and inference time. |
|
cosine_scale_1 (`float`, defaults to 3): |
|
Control the strength of skip-residual. For specific impacts, please refer to Appendix C |
|
in the DemoFusion paper. |
|
cosine_scale_2 (`float`, defaults to 1): |
|
Control the strength of dilated sampling. For specific impacts, please refer to Appendix C |
|
in the DemoFusion paper. |
|
cosine_scale_3 (`float`, defaults to 1): |
|
Control the strength of the gaussion filter. For specific impacts, please refer to Appendix C |
|
in the DemoFusion paper. |
|
sigma (`float`, defaults to 1): |
|
The standard value of the gaussian filter. |
|
show_image (`bool`, defaults to False): |
|
Determine whether to show intermediate results during generation. |
|
lowvram (`bool`, defaults to False): |
|
Try to fit in 8 Gb of VRAM, with xformers installed. |
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned containing the output images. |
|
""" |
|
controlnet = ( |
|
self.controlnet._orig_mod |
|
if is_compiled_module(self.controlnet) |
|
else self.controlnet |
|
) |
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance( |
|
control_guidance_end, list |
|
): |
|
control_guidance_start = len(control_guidance_end) * [ |
|
control_guidance_start |
|
] |
|
elif not isinstance(control_guidance_end, list) and isinstance( |
|
control_guidance_start, list |
|
): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance( |
|
control_guidance_end, list |
|
): |
|
mult = ( |
|
len(controlnet.nets) |
|
if isinstance(controlnet, MultiControlNetModel) |
|
else 1 |
|
) |
|
control_guidance_start, control_guidance_end = mult * [ |
|
control_guidance_start |
|
], mult * [control_guidance_end] |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
x1_size = self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
height_scale = height / x1_size |
|
width_scale = width / x1_size |
|
scale_num = int(max(height_scale, width_scale)) |
|
aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale) |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
condition_image, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
controlnet_conditioning_scale, |
|
control_guidance_start, |
|
control_guidance_end, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
self.lowvram = lowvram |
|
if self.lowvram: |
|
self.vae.cpu() |
|
self.unet.cpu() |
|
self.text_encoder.to(device) |
|
self.text_encoder_2.to(device) |
|
image_lr.cpu() |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance( |
|
controlnet_conditioning_scale, float |
|
): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len( |
|
controlnet.nets |
|
) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) |
|
if cross_attention_kwargs is not None |
|
else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt, |
|
prompt_2, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
condition_image = self.prepare_image( |
|
image=condition_image, |
|
width=width // scale_num, |
|
height=height // scale_num, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
|
|
elif isinstance(controlnet, MultiControlNetModel): |
|
condition_images = [] |
|
|
|
for image_ in condition_image: |
|
image_ = self.prepare_image( |
|
image=image_, |
|
width=width // scale_num, |
|
height=height // scale_num, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
condition_images.append(image_) |
|
|
|
condition_image = condition_images |
|
|
|
else: |
|
assert False |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height // scale_num, |
|
width // scale_num, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append( |
|
keeps[0] if isinstance(controlnet, ControlNetModel) else keeps |
|
) |
|
|
|
|
|
if isinstance(condition_image, list): |
|
original_size = original_size or condition_image[0].shape[-2:] |
|
else: |
|
original_size = original_size or condition_image.shape[-2:] |
|
target_size = target_size or (height, width) |
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
add_time_ids = self._get_add_time_ids( |
|
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype |
|
) |
|
|
|
if negative_original_size is not None and negative_target_size is not None: |
|
negative_add_time_ids = self._get_add_time_ids( |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
) |
|
else: |
|
negative_add_time_ids = add_time_ids |
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat( |
|
[negative_pooled_prompt_embeds, add_text_embeds], dim=0 |
|
) |
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat( |
|
batch_size * num_images_per_prompt, 1 |
|
) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
|
output_images = [] |
|
|
|
|
|
|
|
if self.lowvram: |
|
self.text_encoder.cpu() |
|
self.text_encoder_2.cpu() |
|
|
|
if image_lr == None: |
|
print("### Phase 1 Denoising ###") |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.lowvram: |
|
self.vae.cpu() |
|
self.unet.to(device) |
|
|
|
latents_for_view = latents |
|
|
|
|
|
latent_model_input = ( |
|
latents.repeat_interleave(2, dim=0) |
|
if do_classifier_free_guidance |
|
else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
added_cond_kwargs = { |
|
"text_embeds": add_text_embeds, |
|
"time_ids": add_time_ids, |
|
} |
|
|
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input( |
|
control_model_input, t |
|
) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
controlnet_added_cond_kwargs = { |
|
"text_embeds": add_text_embeds.chunk(2)[1], |
|
"time_ids": add_time_ids.chunk(2)[1], |
|
} |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
controlnet_added_cond_kwargs = added_cond_kwargs |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [ |
|
c * s |
|
for c, s in zip( |
|
controlnet_conditioning_scale, controlnet_keep[i] |
|
) |
|
] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=condition_image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
added_cond_kwargs=controlnet_added_cond_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [ |
|
torch.cat([torch.zeros_like(d), d]) |
|
for d in down_block_res_samples |
|
] |
|
mid_block_res_sample = torch.cat( |
|
[ |
|
torch.zeros_like(mid_block_res_sample), |
|
mid_block_res_sample, |
|
] |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = ( |
|
noise_pred[::2], |
|
noise_pred[1::2], |
|
) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps |
|
and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
else: |
|
print("### Encoding Real Image ###") |
|
latents = self.vae.encode(image_lr) |
|
latents = latents.latent_dist.sample() * self.vae.config.scaling_factor |
|
|
|
anchor_mean = latents.mean() |
|
anchor_std = latents.std() |
|
if self.lowvram: |
|
latents = latents.cpu() |
|
torch.cuda.empty_cache() |
|
if not output_type == "latent": |
|
|
|
needs_upcasting = ( |
|
self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
) |
|
|
|
if self.lowvram: |
|
needs_upcasting = ( |
|
False |
|
) |
|
self.unet.cpu() |
|
self.vae.to(device) |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to( |
|
next(iter(self.vae.post_quant_conv.parameters())).dtype |
|
) |
|
if self.lowvram and multi_decoder: |
|
current_width_height = ( |
|
self.unet.config.sample_size * self.vae_scale_factor |
|
) |
|
image = self.tiled_decode( |
|
latents, current_width_height, current_width_height |
|
) |
|
else: |
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, return_dict=False |
|
)[0] |
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
if show_image: |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image[0]) |
|
plt.axis("off") |
|
plt.show() |
|
output_images.append(image[0]) |
|
|
|
|
|
if image_lr == None: |
|
starting_scale = 2 |
|
else: |
|
starting_scale = 1 |
|
for current_scale_num in range(starting_scale, scale_num + 1): |
|
if self.lowvram: |
|
latents = latents.to(device) |
|
self.unet.to(device) |
|
torch.cuda.empty_cache() |
|
print("### Phase {} Denoising ###".format(current_scale_num)) |
|
current_height = ( |
|
self.unet.config.sample_size * self.vae_scale_factor * current_scale_num |
|
) |
|
current_width = ( |
|
self.unet.config.sample_size * self.vae_scale_factor * current_scale_num |
|
) |
|
if height > width: |
|
current_width = int(current_width * aspect_ratio) |
|
else: |
|
current_height = int(current_height * aspect_ratio) |
|
|
|
latents = F.interpolate( |
|
latents, |
|
size=( |
|
int(current_height / self.vae_scale_factor), |
|
int(current_width / self.vae_scale_factor), |
|
), |
|
mode="bicubic", |
|
) |
|
condition_image = F.interpolate( |
|
condition_image, size=(current_height, current_width), mode="bicubic" |
|
) |
|
|
|
noise_latents = [] |
|
noise = torch.randn_like(latents) |
|
for timestep in timesteps: |
|
noise_latent = self.scheduler.add_noise( |
|
latents, noise, timestep.unsqueeze(0) |
|
) |
|
noise_latents.append(noise_latent) |
|
latents = noise_latents[0] |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
count = torch.zeros_like(latents) |
|
value = torch.zeros_like(latents) |
|
cosine_factor = ( |
|
0.5 |
|
* ( |
|
1 |
|
+ torch.cos( |
|
torch.pi |
|
* (self.scheduler.config.num_train_timesteps - t) |
|
/ self.scheduler.config.num_train_timesteps |
|
) |
|
).cpu() |
|
) |
|
|
|
c1 = cosine_factor**cosine_scale_1 |
|
latents = latents * (1 - c1) + noise_latents[i] * c1 |
|
|
|
|
|
|
|
views = self.get_views( |
|
current_height, |
|
current_width, |
|
stride=stride, |
|
window_size=self.unet.config.sample_size, |
|
random_jitter=True, |
|
) |
|
views_batch = [ |
|
views[i : i + view_batch_size] |
|
for i in range(0, len(views), view_batch_size) |
|
] |
|
|
|
jitter_range = (self.unet.config.sample_size - stride) // 4 |
|
latents_ = F.pad( |
|
latents, |
|
(jitter_range, jitter_range, jitter_range, jitter_range), |
|
"constant", |
|
0, |
|
) |
|
condition_image_ = F.pad( |
|
condition_image, |
|
( |
|
jitter_range * self.vae_scale_factor, |
|
jitter_range * self.vae_scale_factor, |
|
jitter_range * self.vae_scale_factor, |
|
jitter_range * self.vae_scale_factor, |
|
), |
|
"constant", |
|
0, |
|
) |
|
|
|
count_local = torch.zeros_like(latents_) |
|
value_local = torch.zeros_like(latents_) |
|
|
|
for j, batch_view in enumerate(views_batch): |
|
vb_size = len(batch_view) |
|
|
|
|
|
latents_for_view = torch.cat( |
|
[ |
|
latents_[:, :, h_start:h_end, w_start:w_end] |
|
for h_start, h_end, w_start, w_end in batch_view |
|
] |
|
) |
|
condition_image_for_view = torch.cat( |
|
[ |
|
condition_image_[ |
|
0:1, |
|
:, |
|
h_start |
|
* self.vae_scale_factor : h_end |
|
* self.vae_scale_factor, |
|
w_start |
|
* self.vae_scale_factor : w_end |
|
* self.vae_scale_factor, |
|
] |
|
for h_start, h_end, w_start, w_end in batch_view |
|
] |
|
) |
|
|
|
|
|
latent_model_input = latents_for_view |
|
latent_model_input = ( |
|
latent_model_input.repeat_interleave(2, dim=0) |
|
if do_classifier_free_guidance |
|
else latent_model_input |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
condition_image_input = condition_image_for_view |
|
condition_image_input = ( |
|
condition_image_input.repeat_interleave(2, dim=0) |
|
if do_classifier_free_guidance |
|
else condition_image_input |
|
) |
|
|
|
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) |
|
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size) |
|
add_time_ids_input = [] |
|
for h_start, h_end, w_start, w_end in batch_view: |
|
add_time_ids_ = add_time_ids.clone() |
|
add_time_ids_[:, 2] = h_start * self.vae_scale_factor |
|
add_time_ids_[:, 3] = w_start * self.vae_scale_factor |
|
add_time_ids_input.append(add_time_ids_) |
|
add_time_ids_input = torch.cat(add_time_ids_input) |
|
|
|
added_cond_kwargs = { |
|
"text_embeds": add_text_embeds_input, |
|
"time_ids": add_time_ids_input, |
|
} |
|
|
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
control_model_input = latent_model_input |
|
control_model_input = self.scheduler.scale_model_input( |
|
control_model_input, t |
|
) |
|
controlnet_prompt_embeds = prompt_embeds_input.chunk(2)[1] |
|
controlnet_added_cond_kwargs = { |
|
"text_embeds": add_text_embeds_input.chunk(2)[1], |
|
"time_ids": add_time_ids_input.chunk(2)[1], |
|
} |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds_input |
|
controlnet_added_cond_kwargs = added_cond_kwargs |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [ |
|
c * s |
|
for c, s in zip( |
|
controlnet_conditioning_scale, controlnet_keep[i] |
|
) |
|
] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=condition_image_input, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
added_cond_kwargs=controlnet_added_cond_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [ |
|
torch.cat([torch.zeros_like(d), d]) |
|
for d in down_block_res_samples |
|
] |
|
mid_block_res_sample = torch.cat( |
|
[ |
|
torch.zeros_like(mid_block_res_sample), |
|
mid_block_res_sample, |
|
] |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds_input, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = ( |
|
noise_pred[::2], |
|
noise_pred[1::2], |
|
) |
|
noise_pred = ( |
|
noise_pred_uncond |
|
+ guidance_scale |
|
* (noise_pred_text - noise_pred_uncond) |
|
* 1 |
|
) |
|
|
|
|
|
self.scheduler._init_step_index(t) |
|
latents_denoised_batch = self.scheduler.step( |
|
noise_pred, |
|
t, |
|
latents_for_view, |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
for latents_view_denoised, ( |
|
h_start, |
|
h_end, |
|
w_start, |
|
w_end, |
|
) in zip(latents_denoised_batch.chunk(vb_size), batch_view): |
|
value_local[ |
|
:, :, h_start:h_end, w_start:w_end |
|
] += latents_view_denoised |
|
count_local[:, :, h_start:h_end, w_start:w_end] += 1 |
|
|
|
value_local = value_local[ |
|
:, |
|
:, |
|
jitter_range : jitter_range |
|
+ current_height // self.vae_scale_factor, |
|
jitter_range : jitter_range |
|
+ current_width // self.vae_scale_factor, |
|
] |
|
count_local = count_local[ |
|
:, |
|
:, |
|
jitter_range : jitter_range |
|
+ current_height // self.vae_scale_factor, |
|
jitter_range : jitter_range |
|
+ current_width // self.vae_scale_factor, |
|
] |
|
|
|
c2 = cosine_factor**cosine_scale_2 |
|
|
|
value += value_local / count_local * (1 - c2) |
|
count += torch.ones_like(value_local) * (1 - c2) |
|
|
|
|
|
|
|
h_pad = ( |
|
current_scale_num - (latents.size(2) % current_scale_num) |
|
) % current_scale_num |
|
w_pad = ( |
|
current_scale_num - (latents.size(3) % current_scale_num) |
|
) % current_scale_num |
|
latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), "constant", 0) |
|
|
|
count_global = torch.zeros_like(latents_) |
|
value_global = torch.zeros_like(latents_) |
|
|
|
c3 = 0.99 * cosine_factor**cosine_scale_3 + 1e-2 |
|
std_, mean_ = latents_.std(), latents_.mean() |
|
latents_gaussian = gaussian_filter( |
|
latents_, |
|
kernel_size=(2 * current_scale_num - 1), |
|
sigma=sigma * c3, |
|
) |
|
latents_gaussian = ( |
|
latents_gaussian - latents_gaussian.mean() |
|
) / latents_gaussian.std() * std_ + mean_ |
|
|
|
latents_for_view = [] |
|
for h in range(current_scale_num): |
|
for w in range(current_scale_num): |
|
latents_for_view.append( |
|
latents_[ |
|
:, :, h::current_scale_num, w::current_scale_num |
|
] |
|
) |
|
latents_for_view = torch.cat(latents_for_view) |
|
|
|
latents_for_view_gaussian = [] |
|
for h in range(current_scale_num): |
|
for w in range(current_scale_num): |
|
latents_for_view_gaussian.append( |
|
latents_gaussian[ |
|
:, :, h::current_scale_num, w::current_scale_num |
|
] |
|
) |
|
latents_for_view_gaussian = torch.cat(latents_for_view_gaussian) |
|
|
|
condition_image_for_view = [] |
|
for h in range(current_scale_num): |
|
for w in range(current_scale_num): |
|
condition_image_ = F.pad( |
|
condition_image, |
|
( |
|
w_pad * self.vae_scale_factor, |
|
w * self.vae_scale_factor, |
|
h_pad * self.vae_scale_factor, |
|
h * self.vae_scale_factor, |
|
), |
|
"constant", |
|
0, |
|
) |
|
condition_image_for_view.append( |
|
condition_image_[ |
|
0:1, |
|
:, |
|
h * self.vae_scale_factor :: current_scale_num, |
|
w * self.vae_scale_factor :: current_scale_num, |
|
] |
|
) |
|
condition_image_for_view = torch.cat(condition_image_for_view) |
|
|
|
vb_size = latents_for_view.size(0) |
|
|
|
|
|
latent_model_input = latents_for_view_gaussian |
|
latent_model_input = ( |
|
latent_model_input.repeat_interleave(2, dim=0) |
|
if do_classifier_free_guidance |
|
else latent_model_input |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
condition_image_input = condition_image_for_view |
|
condition_image_input = ( |
|
condition_image_input.repeat_interleave(2, dim=0) |
|
if do_classifier_free_guidance |
|
else condition_image_input |
|
) |
|
|
|
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) |
|
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size) |
|
add_time_ids_input = torch.cat([add_time_ids] * vb_size) |
|
|
|
added_cond_kwargs = { |
|
"text_embeds": add_text_embeds_input, |
|
"time_ids": add_time_ids_input, |
|
} |
|
|
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
control_model_input = latent_model_input |
|
control_model_input = self.scheduler.scale_model_input( |
|
control_model_input, t |
|
) |
|
controlnet_prompt_embeds = prompt_embeds_input.chunk(2)[1] |
|
controlnet_added_cond_kwargs = { |
|
"text_embeds": add_text_embeds_input.chunk(2)[1], |
|
"time_ids": add_time_ids_input.chunk(2)[1], |
|
} |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds_input |
|
controlnet_added_cond_kwargs = added_cond_kwargs |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [ |
|
c * s |
|
for c, s in zip( |
|
controlnet_conditioning_scale, controlnet_keep[i] |
|
) |
|
] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=condition_image_input, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
added_cond_kwargs=controlnet_added_cond_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [ |
|
torch.cat([torch.zeros_like(d), d]) |
|
for d in down_block_res_samples |
|
] |
|
mid_block_res_sample = torch.cat( |
|
[ |
|
torch.zeros_like(mid_block_res_sample), |
|
mid_block_res_sample, |
|
] |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds_input, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = ( |
|
noise_pred[::2], |
|
noise_pred[1::2], |
|
) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
|
|
for h in range(current_scale_num): |
|
for w in range(current_scale_num): |
|
noise_pred_ = noise_pred.chunk(vb_size)[ |
|
h * current_scale_num + w |
|
] |
|
value_global[ |
|
:, :, h::current_scale_num, w::current_scale_num |
|
] += noise_pred_ |
|
count_global[ |
|
:, :, h::current_scale_num, w::current_scale_num |
|
] += 1 |
|
|
|
|
|
self.scheduler._init_step_index(t) |
|
value_global = self.scheduler.step( |
|
value_global, |
|
t, |
|
latents_, |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
c2 = cosine_factor**cosine_scale_2 |
|
|
|
value_global = value_global[:, :, h_pad:, w_pad:] |
|
|
|
value += value_global * c2 |
|
count += torch.ones_like(value_global) * c2 |
|
|
|
|
|
|
|
latents = torch.where(count > 0, value / count, value) |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps |
|
and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
|
|
latents = ( |
|
latents - latents.mean() |
|
) / latents.std() * anchor_std + anchor_mean |
|
if self.lowvram: |
|
latents = latents.cpu() |
|
torch.cuda.empty_cache() |
|
if not output_type == "latent": |
|
|
|
needs_upcasting = ( |
|
self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
) |
|
|
|
if self.lowvram: |
|
needs_upcasting = ( |
|
False |
|
) |
|
self.unet.cpu() |
|
self.vae.to(device) |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to( |
|
next(iter(self.vae.post_quant_conv.parameters())).dtype |
|
) |
|
|
|
print("### Phase {} Decoding ###".format(current_scale_num)) |
|
if multi_decoder: |
|
image = self.tiled_decode( |
|
latents, current_height, current_width |
|
) |
|
else: |
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, return_dict=False |
|
)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type |
|
) |
|
if show_image: |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image[0]) |
|
plt.axis("off") |
|
plt.show() |
|
output_images.append(image[0]) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
return output_images |
|
|
|
|
|
def load_lora_weights( |
|
self, |
|
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate.hooks import ( |
|
AlignDevicesHook, |
|
CpuOffload, |
|
remove_hook_from_module, |
|
) |
|
else: |
|
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.") |
|
|
|
is_model_cpu_offload = False |
|
is_sequential_cpu_offload = False |
|
recursive = False |
|
for _, component in self.components.items(): |
|
if isinstance(component, torch.nn.Module): |
|
if hasattr(component, "_hf_hook"): |
|
is_model_cpu_offload = isinstance( |
|
getattr(component, "_hf_hook"), CpuOffload |
|
) |
|
is_sequential_cpu_offload = isinstance( |
|
getattr(component, "_hf_hook"), AlignDevicesHook |
|
) |
|
logger.info( |
|
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." |
|
) |
|
recursive = is_sequential_cpu_offload |
|
remove_hook_from_module(component, recurse=recursive) |
|
state_dict, network_alphas = self.lora_state_dict( |
|
pretrained_model_name_or_path_or_dict, |
|
unet_config=self.unet.config, |
|
**kwargs, |
|
) |
|
self.load_lora_into_unet( |
|
state_dict, network_alphas=network_alphas, unet=self.unet |
|
) |
|
|
|
text_encoder_state_dict = { |
|
k: v for k, v in state_dict.items() if "text_encoder." in k |
|
} |
|
if len(text_encoder_state_dict) > 0: |
|
self.load_lora_into_text_encoder( |
|
text_encoder_state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder, |
|
prefix="text_encoder", |
|
lora_scale=self.lora_scale, |
|
) |
|
|
|
text_encoder_2_state_dict = { |
|
k: v for k, v in state_dict.items() if "text_encoder_2." in k |
|
} |
|
if len(text_encoder_2_state_dict) > 0: |
|
self.load_lora_into_text_encoder( |
|
text_encoder_2_state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder_2, |
|
prefix="text_encoder_2", |
|
lora_scale=self.lora_scale, |
|
) |
|
|
|
|
|
if is_model_cpu_offload: |
|
self.enable_model_cpu_offload() |
|
elif is_sequential_cpu_offload: |
|
self.enable_sequential_cpu_offload() |
|
|
|
@classmethod |
|
def save_lora_weights( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_lora_layers: Dict[ |
|
str, Union[torch.nn.Module, torch.Tensor] |
|
] = None, |
|
text_encoder_2_lora_layers: Dict[ |
|
str, Union[torch.nn.Module, torch.Tensor] |
|
] = None, |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = True, |
|
): |
|
state_dict = {} |
|
|
|
def pack_weights(layers, prefix): |
|
layers_weights = ( |
|
layers.state_dict() if isinstance(layers, torch.nn.Module) else layers |
|
) |
|
layers_state_dict = { |
|
f"{prefix}.{module_name}": param |
|
for module_name, param in layers_weights.items() |
|
} |
|
return layers_state_dict |
|
|
|
if not ( |
|
unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers |
|
): |
|
raise ValueError( |
|
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." |
|
) |
|
|
|
if unet_lora_layers: |
|
state_dict.update(pack_weights(unet_lora_layers, "unet")) |
|
|
|
if text_encoder_lora_layers and text_encoder_2_lora_layers: |
|
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) |
|
state_dict.update( |
|
pack_weights(text_encoder_2_lora_layers, "text_encoder_2") |
|
) |
|
|
|
self.write_lora_layers( |
|
state_dict=state_dict, |
|
save_directory=save_directory, |
|
is_main_process=is_main_process, |
|
weight_name=weight_name, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
def _remove_text_encoder_monkey_patch(self): |
|
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) |
|
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) |
|
|