CM2000112 / external /llite /networks /extract_lora_from_models.py
jayparmr's picture
Upload folder using huggingface_hub
ea5c647
# extract approximating LoRA by svd from two SD models
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo!
import argparse
import json
import os
import time
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library import sai_model_spec, model_util, sdxl_model_util
import lora
# CLAMP_QUANTILE = 0.99
# MIN_DIFF = 1e-1
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(model, file_name)
else:
torch.save(model, file_name)
def svd(
model_org=None,
model_tuned=None,
save_to=None,
dim=4,
v2=None,
sdxl=None,
conv_dim=None,
v_parameterization=None,
device=None,
save_precision=None,
clamp_quantile=0.99,
min_diff=0.01,
no_metadata=False,
):
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
assert v2 != sdxl or (not v2 and not sdxl), "v2 and sdxl cannot be specified at the same time / v2とsdxlは同時に指定できません"
if v_parameterization is None:
v_parameterization = v2
save_dtype = str_to_dtype(save_precision)
# load models
if not sdxl:
print(f"loading original SD model : {model_org}")
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_org)
text_encoders_o = [text_encoder_o]
print(f"loading tuned SD model : {model_tuned}")
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_tuned)
text_encoders_t = [text_encoder_t]
model_version = model_util.get_model_version_str_for_sd1_sd2(v2, v_parameterization)
else:
print(f"loading original SDXL model : {model_org}")
text_encoder_o1, text_encoder_o2, _, unet_o, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_org, "cpu"
)
text_encoders_o = [text_encoder_o1, text_encoder_o2]
print(f"loading original SDXL model : {model_tuned}")
text_encoder_t1, text_encoder_t2, _, unet_t, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_tuned, "cpu"
)
text_encoders_t = [text_encoder_t1, text_encoder_t2]
model_version = sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0
# create LoRA network to extract weights: Use dim (rank) as alpha
if conv_dim is None:
kwargs = {}
else:
kwargs = {"conv_dim": conv_dim, "conv_alpha": conv_dim}
lora_network_o = lora.create_network(1.0, dim, dim, None, text_encoders_o, unet_o, **kwargs)
lora_network_t = lora.create_network(1.0, dim, dim, None, text_encoders_t, unet_t, **kwargs)
assert len(lora_network_o.text_encoder_loras) == len(
lora_network_t.text_encoder_loras
), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) "
# get diffs
diffs = {}
text_encoder_different = False
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
# Text Encoder might be same
if not text_encoder_different and torch.max(torch.abs(diff)) > min_diff:
text_encoder_different = True
print(f"Text encoder is different. {torch.max(torch.abs(diff))} > {min_diff}")
diff = diff.float()
diffs[lora_name] = diff
if not text_encoder_different:
print("Text encoder is same. Extract U-Net only.")
lora_network_o.text_encoder_loras = []
diffs = {}
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
diff = diff.float()
if args.device:
diff = diff.to(args.device)
diffs[lora_name] = diff
# make LoRA with svd
print("calculating by svd")
lora_weights = {}
with torch.no_grad():
for lora_name, mat in tqdm(list(diffs.items())):
# if conv_dim is None, diffs do not include LoRAs for conv2d-3x3
conv2d = len(mat.size()) == 4
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
rank = dim if not conv2d_3x3 or conv_dim is None else conv_dim
out_dim, in_dim = mat.size()[0:2]
if device:
mat = mat.to(device)
# print(lora_name, mat.size(), mat.device, rank, in_dim, out_dim)
rank = min(rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
if conv2d:
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, clamp_quantile)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, rank, 1, 1)
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
U = U.to("cpu").contiguous()
Vh = Vh.to("cpu").contiguous()
lora_weights[lora_name] = (U, Vh)
# make state dict for LoRA
lora_sd = {}
for lora_name, (up_weight, down_weight) in lora_weights.items():
lora_sd[lora_name + ".lora_up.weight"] = up_weight
lora_sd[lora_name + ".lora_down.weight"] = down_weight
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0])
# load state dict to LoRA and save it
lora_network_save, lora_sd = lora.create_network_from_weights(1.0, None, None, text_encoders_o, unet_o, weights_sd=lora_sd)
lora_network_save.apply_to(text_encoders_o, unet_o) # create internal module references for state_dict
info = lora_network_save.load_state_dict(lora_sd)
print(f"Loading extracted LoRA weights: {info}")
dir_name = os.path.dirname(save_to)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# minimum metadata
net_kwargs = {}
if conv_dim is not None:
net_kwargs["conv_dim"] = str(conv_dim)
net_kwargs["conv_alpha"] = str(float(conv_dim))
metadata = {
"ss_v2": str(v2),
"ss_base_model_version": model_version,
"ss_network_module": "networks.lora",
"ss_network_dim": str(dim),
"ss_network_alpha": str(float(dim)),
"ss_network_args": json.dumps(net_kwargs),
}
if not no_metadata:
title = os.path.splitext(os.path.basename(save_to))[0]
sai_metadata = sai_model_spec.build_metadata(None, v2, v_parameterization, sdxl, True, False, time.time(), title=title)
metadata.update(sai_metadata)
lora_network_save.save_weights(save_to, save_dtype, metadata)
print(f"LoRA weights are saved to: {save_to}")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む")
parser.add_argument(
"--v_parameterization",
action="store_true",
default=None,
help="make LoRA metadata for v-parameterization (default is same to v2) / 作成するLoRAのメタデータにv-parameterization用と設定する(省略時はv2と同じ)",
)
parser.add_argument(
"--sdxl", action="store_true", help="load Stable Diffusion SDXL base model / Stable Diffusion SDXL baseのモデルを読み込む"
)
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat",
)
parser.add_argument(
"--model_org",
type=str,
default=None,
required=True,
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors",
)
parser.add_argument(
"--model_tuned",
type=str,
default=None,
required=True,
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
required=True,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
)
parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)")
parser.add_argument(
"--conv_dim",
type=int,
default=None,
help="dimension (rank) of LoRA for Conv2d-3x3 (default None, disabled) / LoRAのConv2d-3x3の次元数(rank)(デフォルトNone、適用なし)",
)
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
parser.add_argument(
"--clamp_quantile",
type=float,
default=0.99,
help="Quantile clamping value, float, (0-1). Default = 0.99 / 値をクランプするための分位点、float、(0-1)。デフォルトは0.99",
)
parser.add_argument(
"--min_diff",
type=float,
default=0.01,
help="Minimum difference between finetuned model and base to consider them different enough to extract, float, (0-1). Default = 0.01 /"
+ "LoRAを抽出するために元モデルと派生モデルの差分の最小値、float、(0-1)。デフォルトは0.01",
)
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
svd(**vars(args))