|
|
|
|
|
import argparse |
|
import math |
|
from multiprocessing import Value |
|
import os |
|
|
|
from accelerate.utils import set_seed |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from library import config_util |
|
from library import train_util |
|
from library import sdxl_train_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
|
|
|
|
def cache_to_disk(args: argparse.Namespace) -> None: |
|
train_util.prepare_dataset_args(args, True) |
|
|
|
|
|
assert args.cache_latents_to_disk, "cache_latents_to_disk must be True / cache_latents_to_diskはTrueである必要があります" |
|
|
|
use_dreambooth_method = args.in_json is None |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if args.sdxl: |
|
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args) |
|
tokenizers = [tokenizer1, tokenizer2] |
|
else: |
|
tokenizer = train_util.load_tokenizer(args) |
|
tokenizers = [tokenizer] |
|
|
|
|
|
if args.dataset_class is None: |
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, True)) |
|
if args.dataset_config is not None: |
|
print(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "in_json"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
print( |
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( |
|
", ".join(ignored) |
|
) |
|
) |
|
else: |
|
if use_dreambooth_method: |
|
print("Using DreamBooth method.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs( |
|
args.train_data_dir, args.reg_data_dir |
|
) |
|
} |
|
] |
|
} |
|
else: |
|
print("Training with captions.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": [ |
|
{ |
|
"image_dir": args.train_data_dir, |
|
"metadata_file": args.in_json, |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizers) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
else: |
|
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizers) |
|
|
|
|
|
|
|
current_epoch = Value("i", 0) |
|
current_step = Value("i", 0) |
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None |
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) |
|
|
|
|
|
print("prepare accelerator") |
|
accelerator = train_util.prepare_accelerator(args) |
|
|
|
|
|
weight_dtype, _ = train_util.prepare_dtype(args) |
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype |
|
|
|
|
|
print("load model") |
|
if args.sdxl: |
|
(_, _, _, vae, _, _, _) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype) |
|
else: |
|
_, vae, _, _ = train_util.load_target_model(args, weight_dtype, accelerator) |
|
|
|
if torch.__version__ >= "2.0.0": |
|
vae.set_use_memory_efficient_attention_xformers(args.xformers) |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
|
|
|
|
train_dataset_group.set_caching_mode("latents") |
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, |
|
batch_size=1, |
|
shuffle=True, |
|
collate_fn=collator, |
|
num_workers=n_workers, |
|
persistent_workers=args.persistent_data_loader_workers, |
|
) |
|
|
|
|
|
train_dataloader = accelerator.prepare(train_dataloader) |
|
|
|
|
|
for batch in tqdm(train_dataloader): |
|
b_size = len(batch["images"]) |
|
vae_batch_size = b_size if args.vae_batch_size is None else args.vae_batch_size |
|
flip_aug = batch["flip_aug"] |
|
random_crop = batch["random_crop"] |
|
bucket_reso = batch["bucket_reso"] |
|
|
|
|
|
for i in range(0, b_size, vae_batch_size): |
|
images = batch["images"][i : i + vae_batch_size] |
|
absolute_paths = batch["absolute_paths"][i : i + vae_batch_size] |
|
resized_sizes = batch["resized_sizes"][i : i + vae_batch_size] |
|
|
|
image_infos = [] |
|
for i, (image, absolute_path, resized_size) in enumerate(zip(images, absolute_paths, resized_sizes)): |
|
image_info = train_util.ImageInfo(absolute_path, 1, "dummy", False, absolute_path) |
|
image_info.image = image |
|
image_info.bucket_reso = bucket_reso |
|
image_info.resized_size = resized_size |
|
image_info.latents_npz = os.path.splitext(absolute_path)[0] + ".npz" |
|
|
|
if args.skip_existing: |
|
if train_util.is_disk_cached_latents_is_expected(image_info.bucket_reso, image_info.latents_npz, flip_aug): |
|
print(f"Skipping {image_info.latents_npz} because it already exists.") |
|
continue |
|
|
|
image_infos.append(image_info) |
|
|
|
if len(image_infos) > 0: |
|
train_util.cache_batch_latents(vae, True, image_infos, flip_aug, random_crop) |
|
|
|
accelerator.wait_for_everyone() |
|
accelerator.print(f"Finished caching latents for {len(train_dataset_group)} batches.") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_training_arguments(parser, True) |
|
train_util.add_dataset_arguments(parser, True, True, True) |
|
config_util.add_config_arguments(parser) |
|
parser.add_argument("--sdxl", action="store_true", help="Use SDXL model / SDXLモデルを使用する") |
|
parser.add_argument( |
|
"--no_half_vae", |
|
action="store_true", |
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", |
|
) |
|
parser.add_argument( |
|
"--skip_existing", |
|
action="store_true", |
|
help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)", |
|
) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
cache_to_disk(args) |
|
|