CM2000112 / internals /pipelines /realtime_draw.py
jayparmr's picture
update : inference
35575bb verified
from typing import Optional
import torch
from diffusers import ControlNetModel, StableDiffusionControlNetImg2ImgPipeline
from PIL import Image
import internals.util.image as ImageUtil
from internals.pipelines.commons import AbstractPipeline
from internals.pipelines.controlnets import ControlNet
from internals.pipelines.high_res import HighRes
from internals.pipelines.sdxl_llite_pipeline import SDXLLLiteImg2ImgPipeline
from internals.util import get_generators
from internals.util.config import (
get_base_dimension,
get_hf_cache_dir,
get_is_sdxl,
get_num_return_sequences,
)
class RealtimeDraw(AbstractPipeline):
def load(self, pipeline: AbstractPipeline):
if hasattr(self, "pipe"):
return
if get_is_sdxl():
lite_pipe = SDXLLLiteImg2ImgPipeline()
lite_pipe.load(
pipeline,
[
"https://s3.ap-south-1.amazonaws.com/autodraft.model.assets/models/replicate-xl-llite.safetensors"
],
)
self.pipe = lite_pipe
else:
self.__controlnet_scribble = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_scribble",
torch_dtype=torch.float16,
cache_dir=get_hf_cache_dir(),
)
self.__controlnet_seg = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_seg",
torch_dtype=torch.float16,
cache_dir=get_hf_cache_dir(),
)
kwargs = {**pipeline.pipe.components} # pyright: ignore
kwargs.pop("image_encoder", None)
self.pipe = StableDiffusionControlNetImg2ImgPipeline(
**kwargs, controlnet=self.__controlnet_seg
).to("cuda")
self.pipe.safety_checker = None
self.pipe2 = StableDiffusionControlNetImg2ImgPipeline(
**kwargs, controlnet=[self.__controlnet_scribble, self.__controlnet_seg]
).to("cuda")
self.pipe2.safety_checker = None
def process_seg(
self,
image: Image.Image,
prompt: str,
negative_prompt: str,
seed: int,
):
if get_is_sdxl():
raise Exception("SDXL is not supported for this method")
generator = get_generators(seed, get_num_return_sequences())
image = ImageUtil.resize_image(image, 512)
img = self.pipe.__call__(
image=image,
control_image=image,
prompt=prompt,
num_inference_steps=15,
negative_prompt=negative_prompt,
generator=generator,
guidance_scale=10,
strength=0.8,
).images[0]
return img
def process_img(
self,
prompt: str,
negative_prompt: str,
seed: int,
image: Optional[Image.Image] = None,
image2: Optional[Image.Image] = None,
):
generator = get_generators(seed, get_num_return_sequences())
b_dimen = get_base_dimension()
if not image:
size = (b_dimen, b_dimen)
if image2:
size = image2.size
image = Image.new("RGB", size, color=0)
if not image2:
size = (b_dimen, b_dimen)
if image:
size = image.size
image2 = Image.new("RGB", size, color=0)
if get_is_sdxl():
size = HighRes.find_closest_sdxl_aspect_ratio(image.size[0], image.size[1])
image = image.resize(size)
torch.manual_seed(seed)
images = self.pipe.__call__(
image=image,
condition_image=image,
negative_prompt=negative_prompt,
prompt=prompt,
seed=seed,
num_inference_steps=10,
width=image.size[0],
height=image.size[1],
)
img = images[0]
else:
image = ImageUtil.resize_image(image, b_dimen)
scribble = ControlNet.scribble_image(image)
image2 = ImageUtil.resize_image(image2, b_dimen)
img = self.pipe2.__call__(
image=image,
control_image=[scribble, image2],
prompt=prompt,
num_inference_steps=15,
negative_prompt=negative_prompt,
guidance_scale=10,
generator=generator,
strength=0.9,
width=image.size[0],
height=image.size[1],
controlnet_conditioning_scale=[1.0, 0.8],
).images[0]
img = ImageUtil.resize_image(img, 512)
return img