jayparmr's picture
Upload 118 files
19b3da3
import glob
import os
import cv2
import PIL.Image as Image
import numpy as np
from torch.utils.data import Dataset
import torch.nn.functional as F
def load_image(fname, mode='RGB', return_orig=False):
img = np.array(Image.open(fname).convert(mode))
if img.ndim == 3:
img = np.transpose(img, (2, 0, 1))
out_img = img.astype('float32') / 255
if return_orig:
return out_img, img
else:
return out_img
def ceil_modulo(x, mod):
if x % mod == 0:
return x
return (x // mod + 1) * mod
def pad_img_to_modulo(img, mod):
channels, height, width = img.shape
out_height = ceil_modulo(height, mod)
out_width = ceil_modulo(width, mod)
return np.pad(img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode='symmetric')
def pad_tensor_to_modulo(img, mod):
batch_size, channels, height, width = img.shape
out_height = ceil_modulo(height, mod)
out_width = ceil_modulo(width, mod)
return F.pad(img, pad=(0, out_width - width, 0, out_height - height), mode='reflect')
def scale_image(img, factor, interpolation=cv2.INTER_AREA):
if img.shape[0] == 1:
img = img[0]
else:
img = np.transpose(img, (1, 2, 0))
img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation)
if img.ndim == 2:
img = img[None, ...]
else:
img = np.transpose(img, (2, 0, 1))
return img
class InpaintingDataset(Dataset):
def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None):
self.datadir = datadir
self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, '**', '*mask*.png'), recursive=True)))
self.img_filenames = [fname.rsplit('_mask', 1)[0] + img_suffix for fname in self.mask_filenames]
self.pad_out_to_modulo = pad_out_to_modulo
self.scale_factor = scale_factor
def __len__(self):
return len(self.mask_filenames)
def __getitem__(self, i):
image = load_image(self.img_filenames[i], mode='RGB')
mask = load_image(self.mask_filenames[i], mode='L')
result = dict(image=image, mask=mask[None, ...])
if self.scale_factor is not None:
result['image'] = scale_image(result['image'], self.scale_factor)
result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST)
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo)
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo)
return result
class OurInpaintingDataset(Dataset):
def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None):
self.datadir = datadir
self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, 'mask', '**', '*mask*.png'), recursive=True)))
self.img_filenames = [os.path.join(self.datadir, 'img', os.path.basename(fname.rsplit('-', 1)[0].rsplit('_', 1)[0]) + '.png') for fname in self.mask_filenames]
self.pad_out_to_modulo = pad_out_to_modulo
self.scale_factor = scale_factor
def __len__(self):
return len(self.mask_filenames)
def __getitem__(self, i):
result = dict(image=load_image(self.img_filenames[i], mode='RGB'),
mask=load_image(self.mask_filenames[i], mode='L')[None, ...])
if self.scale_factor is not None:
result['image'] = scale_image(result['image'], self.scale_factor)
result['mask'] = scale_image(result['mask'], self.scale_factor)
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo)
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo)
return result
class PrecomputedInpaintingResultsDataset(InpaintingDataset):
def __init__(self, datadir, predictdir, inpainted_suffix='_inpainted.jpg', **kwargs):
super().__init__(datadir, **kwargs)
if not datadir.endswith('/'):
datadir += '/'
self.predictdir = predictdir
self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix)
for fname in self.mask_filenames]
def __getitem__(self, i):
result = super().__getitem__(i)
result['inpainted'] = load_image(self.pred_filenames[i])
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo)
return result
class OurPrecomputedInpaintingResultsDataset(OurInpaintingDataset):
def __init__(self, datadir, predictdir, inpainted_suffix="png", **kwargs):
super().__init__(datadir, **kwargs)
if not datadir.endswith('/'):
datadir += '/'
self.predictdir = predictdir
self.pred_filenames = [os.path.join(predictdir, os.path.basename(os.path.splitext(fname)[0]) + f'_inpainted.{inpainted_suffix}')
for fname in self.mask_filenames]
# self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix)
# for fname in self.mask_filenames]
def __getitem__(self, i):
result = super().__getitem__(i)
result['inpainted'] = self.file_loader(self.pred_filenames[i])
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo)
return result
class InpaintingEvalOnlineDataset(Dataset):
def __init__(self, indir, mask_generator, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None, **kwargs):
self.indir = indir
self.mask_generator = mask_generator
self.img_filenames = sorted(list(glob.glob(os.path.join(self.indir, '**', f'*{img_suffix}' ), recursive=True)))
self.pad_out_to_modulo = pad_out_to_modulo
self.scale_factor = scale_factor
def __len__(self):
return len(self.img_filenames)
def __getitem__(self, i):
img, raw_image = load_image(self.img_filenames[i], mode='RGB', return_orig=True)
mask = self.mask_generator(img, raw_image=raw_image)
result = dict(image=img, mask=mask)
if self.scale_factor is not None:
result['image'] = scale_image(result['image'], self.scale_factor)
result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST)
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo)
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo)
return result