Upload folder using huggingface_hub
Browse files- internals/pipelines/pose_detector.py +17 -63
- internals/pipelines/remove_background.py +4 -2
- models/pose/body.py +231 -0
- models/pose/model.py +219 -0
- models/pose/util.py +46 -0
- requirements.txt +2 -2
internals/pipelines/pose_detector.py
CHANGED
@@ -1,24 +1,19 @@
|
|
1 |
from pathlib import Path
|
2 |
from typing import Optional, Union
|
3 |
|
4 |
-
from mmdet.apis import inference_detector, init_detector
|
5 |
-
from mmpose.apis import (
|
6 |
-
inference_top_down_pose_model,
|
7 |
-
init_pose_model,
|
8 |
-
process_mmdet_results,
|
9 |
-
vis_pose_result,
|
10 |
-
)
|
11 |
-
from mmpose.datasets import DatasetInfo
|
12 |
from PIL import Image, ImageDraw
|
13 |
from torch import ge
|
14 |
|
15 |
from internals.util.commons import download_file, download_image
|
16 |
from internals.util.config import get_root_dir
|
|
|
17 |
|
18 |
|
19 |
class PoseDetector:
|
20 |
-
__det_model = "https://comic-assets.s3.ap-south-1.amazonaws.com/models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth"
|
21 |
-
__pose_model =
|
|
|
|
|
22 |
|
23 |
__loaded = False
|
24 |
|
@@ -26,25 +21,11 @@ class PoseDetector:
|
|
26 |
if self.__loaded:
|
27 |
return
|
28 |
|
29 |
-
det_path = Path.home() / ".cache" / self.__det_model.split("/")[-1]
|
30 |
pose_path = Path.home() / ".cache" / self.__pose_model.split("/")[-1]
|
31 |
|
32 |
-
download_file(self.__det_model, det_path)
|
33 |
download_file(self.__pose_model, pose_path)
|
34 |
|
35 |
-
self.
|
36 |
-
f"{get_root_dir()}/external/faster_rcnn_r50_fpn_coco.py",
|
37 |
-
str(det_path),
|
38 |
-
device="cpu",
|
39 |
-
)
|
40 |
-
self.pose_model = init_pose_model(
|
41 |
-
f"{get_root_dir()}/external/hrnet_w48_coco_256x192.py",
|
42 |
-
str(pose_path),
|
43 |
-
device="cpu",
|
44 |
-
)
|
45 |
-
self.dataset = self.pose_model.cfg.data["test"]["type"]
|
46 |
-
self.dataset_info = self.pose_model.cfg.data["test"].get("dataset_info", None)
|
47 |
-
self.dataset_info = DatasetInfo(self.dataset_info)
|
48 |
|
49 |
self.__loaded = True
|
50 |
|
@@ -113,47 +94,20 @@ class PoseDetector:
|
|
113 |
|
114 |
return image
|
115 |
|
116 |
-
def infer(self,
|
117 |
candidate = []
|
118 |
subset = []
|
119 |
|
120 |
-
if type(
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
person_results = process_mmdet_results(mmdet_results, 1)
|
131 |
-
|
132 |
-
pose_results, _ = inference_top_down_pose_model(
|
133 |
-
self.pose_model,
|
134 |
-
str(image_path),
|
135 |
-
person_results,
|
136 |
-
bbox_thr=0.3,
|
137 |
-
format="xyxy",
|
138 |
-
dataset=self.dataset,
|
139 |
-
dataset_info=self.dataset_info,
|
140 |
-
return_heatmap=False,
|
141 |
-
outputs=None,
|
142 |
-
)
|
143 |
-
|
144 |
-
for d in pose_results:
|
145 |
-
n = len(candidate)
|
146 |
-
if d["bbox"][4] < 0.9:
|
147 |
-
continue
|
148 |
-
keypoints = d["keypoints"][:, :2].tolist()
|
149 |
-
midpoint = [
|
150 |
-
(keypoints[5][0] + keypoints[6][0]) / 2,
|
151 |
-
(keypoints[5][1] + keypoints[6][1]) / 2,
|
152 |
-
]
|
153 |
-
keypoints.append(midpoint)
|
154 |
-
candidate.extend(self.__convert_keypoints(keypoints))
|
155 |
-
m = len(candidate)
|
156 |
-
subset.append([j for j in range(n, m)])
|
157 |
|
158 |
return {"candidate": candidate[:18], "subset": subset[:18]}
|
159 |
|
|
|
1 |
from pathlib import Path
|
2 |
from typing import Optional, Union
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from PIL import Image, ImageDraw
|
5 |
from torch import ge
|
6 |
|
7 |
from internals.util.commons import download_file, download_image
|
8 |
from internals.util.config import get_root_dir
|
9 |
+
from models.pose.body import Body
|
10 |
|
11 |
|
12 |
class PoseDetector:
|
13 |
+
# __det_model = "https://comic-assets.s3.ap-south-1.amazonaws.com/models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth"
|
14 |
+
__pose_model = (
|
15 |
+
"https://comic-assets.s3.ap-south-1.amazonaws.com/models/body_pose_model.pth"
|
16 |
+
)
|
17 |
|
18 |
__loaded = False
|
19 |
|
|
|
21 |
if self.__loaded:
|
22 |
return
|
23 |
|
|
|
24 |
pose_path = Path.home() / ".cache" / self.__pose_model.split("/")[-1]
|
25 |
|
|
|
26 |
download_file(self.__pose_model, pose_path)
|
27 |
|
28 |
+
self.body_estimation = Body(str(pose_path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
self.__loaded = True
|
31 |
|
|
|
94 |
|
95 |
return image
|
96 |
|
97 |
+
def infer(self, image: Union[str, Image.Image], width, height) -> dict:
|
98 |
candidate = []
|
99 |
subset = []
|
100 |
|
101 |
+
if type(image) == str:
|
102 |
+
image = download_image(imageUrl)
|
103 |
+
|
104 |
+
image = image.resize((width, height))
|
105 |
+
|
106 |
+
candidate, subset = self.body_estimation.__call__(image)
|
107 |
+
candidate = candidate.tolist()
|
108 |
+
subset = subset.tolist()
|
109 |
+
|
110 |
+
candidate = [item[:2] for item in candidate]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
return {"candidate": candidate[:18], "subset": subset[:18]}
|
113 |
|
internals/pipelines/remove_background.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import io
|
|
|
2 |
from typing import Union
|
3 |
|
4 |
import torch
|
@@ -35,10 +36,11 @@ class RemoveBackgroundV2:
|
|
35 |
)
|
36 |
|
37 |
def remove(self, image: Union[str, Image.Image]) -> Image.Image:
|
|
|
38 |
if type(image) is str:
|
39 |
image = Image.open(io.BytesIO(read_url(image)))
|
40 |
|
41 |
-
image.save(
|
42 |
-
images_without_background = self.interface([
|
43 |
out = images_without_background[0]
|
44 |
return out
|
|
|
1 |
import io
|
2 |
+
from pathlib import Path
|
3 |
from typing import Union
|
4 |
|
5 |
import torch
|
|
|
36 |
)
|
37 |
|
38 |
def remove(self, image: Union[str, Image.Image]) -> Image.Image:
|
39 |
+
img_path = Path.home() / ".cache" / "rm_bg.png"
|
40 |
if type(image) is str:
|
41 |
image = Image.open(io.BytesIO(read_url(image)))
|
42 |
|
43 |
+
image.save(img_path)
|
44 |
+
images_without_background = self.interface([img_path])
|
45 |
out = images_without_background[0]
|
46 |
return out
|
models/pose/body.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
from scipy.ndimage.filters import gaussian_filter
|
6 |
+
import torch
|
7 |
+
from torchvision import transforms
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from models.pose import util
|
11 |
+
from models.pose.model import bodypose_model
|
12 |
+
|
13 |
+
class Body(object):
|
14 |
+
def __init__(self, model_path):
|
15 |
+
self.model = bodypose_model()
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
self.model = self.model.cuda()
|
18 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
19 |
+
self.model.load_state_dict(model_dict)
|
20 |
+
self.model.eval()
|
21 |
+
|
22 |
+
def __call__(self, oriImg: Image.Image):
|
23 |
+
# scale_search = [0.5, 1.0, 1.5, 2.0]
|
24 |
+
oriImg = self.__pil2cv(oriImg)
|
25 |
+
scale_search = [0.5]
|
26 |
+
boxsize = 368
|
27 |
+
stride = 8
|
28 |
+
padValue = 128
|
29 |
+
thre1 = 0.1
|
30 |
+
thre2 = 0.05
|
31 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
32 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
|
33 |
+
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
34 |
+
|
35 |
+
for m in range(len(multiplier)):
|
36 |
+
scale = multiplier[m]
|
37 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
38 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
39 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
40 |
+
im = np.ascontiguousarray(im)
|
41 |
+
|
42 |
+
data = torch.from_numpy(im).float()
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
data = data.cuda()
|
45 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
46 |
+
with torch.no_grad():
|
47 |
+
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
|
48 |
+
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
|
49 |
+
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
|
50 |
+
|
51 |
+
# extract outputs, resize, and remove padding
|
52 |
+
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
|
53 |
+
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
|
54 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
55 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
56 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
57 |
+
|
58 |
+
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
|
59 |
+
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
|
60 |
+
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
61 |
+
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
62 |
+
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
63 |
+
|
64 |
+
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
|
65 |
+
paf_avg += + paf / len(multiplier)
|
66 |
+
|
67 |
+
all_peaks = []
|
68 |
+
peak_counter = 0
|
69 |
+
|
70 |
+
for part in range(18):
|
71 |
+
map_ori = heatmap_avg[:, :, part]
|
72 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
73 |
+
|
74 |
+
map_left = np.zeros(one_heatmap.shape)
|
75 |
+
map_left[1:, :] = one_heatmap[:-1, :]
|
76 |
+
map_right = np.zeros(one_heatmap.shape)
|
77 |
+
map_right[:-1, :] = one_heatmap[1:, :]
|
78 |
+
map_up = np.zeros(one_heatmap.shape)
|
79 |
+
map_up[:, 1:] = one_heatmap[:, :-1]
|
80 |
+
map_down = np.zeros(one_heatmap.shape)
|
81 |
+
map_down[:, :-1] = one_heatmap[:, 1:]
|
82 |
+
|
83 |
+
peaks_binary = np.logical_and.reduce(
|
84 |
+
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
|
85 |
+
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
|
86 |
+
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
|
87 |
+
peak_id = range(peak_counter, peak_counter + len(peaks))
|
88 |
+
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
|
89 |
+
|
90 |
+
all_peaks.append(peaks_with_score_and_id)
|
91 |
+
peak_counter += len(peaks)
|
92 |
+
|
93 |
+
# find connection in the specified sequence, center 29 is in the position 15
|
94 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
95 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
96 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
97 |
+
# the middle joints heatmap correpondence
|
98 |
+
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
|
99 |
+
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
|
100 |
+
[55, 56], [37, 38], [45, 46]]
|
101 |
+
|
102 |
+
connection_all = []
|
103 |
+
special_k = []
|
104 |
+
mid_num = 10
|
105 |
+
|
106 |
+
for k in range(len(mapIdx)):
|
107 |
+
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
|
108 |
+
candA = all_peaks[limbSeq[k][0] - 1]
|
109 |
+
candB = all_peaks[limbSeq[k][1] - 1]
|
110 |
+
nA = len(candA)
|
111 |
+
nB = len(candB)
|
112 |
+
indexA, indexB = limbSeq[k]
|
113 |
+
if (nA != 0 and nB != 0):
|
114 |
+
connection_candidate = []
|
115 |
+
for i in range(nA):
|
116 |
+
for j in range(nB):
|
117 |
+
vec = np.subtract(candB[j][:2], candA[i][:2])
|
118 |
+
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
|
119 |
+
norm = max(0.001, norm)
|
120 |
+
vec = np.divide(vec, norm)
|
121 |
+
|
122 |
+
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
|
123 |
+
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
|
124 |
+
|
125 |
+
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
|
126 |
+
for I in range(len(startend))])
|
127 |
+
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
|
128 |
+
for I in range(len(startend))])
|
129 |
+
|
130 |
+
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
|
131 |
+
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
|
132 |
+
0.5 * oriImg.shape[0] / norm - 1, 0)
|
133 |
+
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
|
134 |
+
criterion2 = score_with_dist_prior > 0
|
135 |
+
if criterion1 and criterion2:
|
136 |
+
connection_candidate.append(
|
137 |
+
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
|
138 |
+
|
139 |
+
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
|
140 |
+
connection = np.zeros((0, 5))
|
141 |
+
for c in range(len(connection_candidate)):
|
142 |
+
i, j, s = connection_candidate[c][0:3]
|
143 |
+
if (i not in connection[:, 3] and j not in connection[:, 4]):
|
144 |
+
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
|
145 |
+
if (len(connection) >= min(nA, nB)):
|
146 |
+
break
|
147 |
+
|
148 |
+
connection_all.append(connection)
|
149 |
+
else:
|
150 |
+
special_k.append(k)
|
151 |
+
connection_all.append([])
|
152 |
+
|
153 |
+
# last number in each row is the total parts number of that person
|
154 |
+
# the second last number in each row is the score of the overall configuration
|
155 |
+
subset = -1 * np.ones((0, 20))
|
156 |
+
candidate = np.array([item for sublist in all_peaks for item in sublist])
|
157 |
+
|
158 |
+
for k in range(len(mapIdx)):
|
159 |
+
if k not in special_k:
|
160 |
+
partAs = connection_all[k][:, 0]
|
161 |
+
partBs = connection_all[k][:, 1]
|
162 |
+
indexA, indexB = np.array(limbSeq[k]) - 1
|
163 |
+
|
164 |
+
for i in range(len(connection_all[k])): # = 1:size(temp,1)
|
165 |
+
found = 0
|
166 |
+
subset_idx = [-1, -1]
|
167 |
+
for j in range(len(subset)): # 1:size(subset,1):
|
168 |
+
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
|
169 |
+
subset_idx[found] = j
|
170 |
+
found += 1
|
171 |
+
|
172 |
+
if found == 1:
|
173 |
+
j = subset_idx[0]
|
174 |
+
if subset[j][indexB] != partBs[i]:
|
175 |
+
subset[j][indexB] = partBs[i]
|
176 |
+
subset[j][-1] += 1
|
177 |
+
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
178 |
+
elif found == 2: # if found 2 and disjoint, merge them
|
179 |
+
j1, j2 = subset_idx
|
180 |
+
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
|
181 |
+
if len(np.nonzero(membership == 2)[0]) == 0: # merge
|
182 |
+
subset[j1][:-2] += (subset[j2][:-2] + 1)
|
183 |
+
subset[j1][-2:] += subset[j2][-2:]
|
184 |
+
subset[j1][-2] += connection_all[k][i][2]
|
185 |
+
subset = np.delete(subset, j2, 0)
|
186 |
+
else: # as like found == 1
|
187 |
+
subset[j1][indexB] = partBs[i]
|
188 |
+
subset[j1][-1] += 1
|
189 |
+
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
190 |
+
|
191 |
+
# if find no partA in the subset, create a new subset
|
192 |
+
elif not found and k < 17:
|
193 |
+
row = -1 * np.ones(20)
|
194 |
+
row[indexA] = partAs[i]
|
195 |
+
row[indexB] = partBs[i]
|
196 |
+
row[-1] = 2
|
197 |
+
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
|
198 |
+
subset = np.vstack([subset, row])
|
199 |
+
# delete some rows of subset which has few parts occur
|
200 |
+
deleteIdx = []
|
201 |
+
for i in range(len(subset)):
|
202 |
+
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
|
203 |
+
deleteIdx.append(i)
|
204 |
+
subset = np.delete(subset, deleteIdx, axis=0)
|
205 |
+
|
206 |
+
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
|
207 |
+
# candidate: x, y, score, id
|
208 |
+
return candidate, subset
|
209 |
+
|
210 |
+
|
211 |
+
def __pil2cv(self, image):
|
212 |
+
''' PIL型 -> OpenCV型 '''
|
213 |
+
new_image = np.array(image, dtype=np.uint8)
|
214 |
+
if new_image.ndim == 2: # モノクロ
|
215 |
+
pass
|
216 |
+
elif new_image.shape[2] == 3: # カラー
|
217 |
+
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
|
218 |
+
elif new_image.shape[2] == 4: # 透過
|
219 |
+
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA)
|
220 |
+
return new_image
|
221 |
+
|
222 |
+
|
223 |
+
# if __name__ == "__main__":
|
224 |
+
# body_estimation = Body('../model/body_pose_model.pth')
|
225 |
+
|
226 |
+
# test_image = '../images/ski.jpg'
|
227 |
+
# oriImg = cv2.imread(test_image) # B,G,R order
|
228 |
+
# candidate, subset = body_estimation(oriImg)
|
229 |
+
# canvas = util.draw_bodypose(oriImg, candidate, subset)
|
230 |
+
# plt.imshow(canvas[:, :, [2, 1, 0]])
|
231 |
+
# plt.show()
|
models/pose/model.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from collections import OrderedDict
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
def make_layers(block, no_relu_layers):
|
8 |
+
layers = []
|
9 |
+
for layer_name, v in block.items():
|
10 |
+
if 'pool' in layer_name:
|
11 |
+
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
|
12 |
+
padding=v[2])
|
13 |
+
layers.append((layer_name, layer))
|
14 |
+
else:
|
15 |
+
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
|
16 |
+
kernel_size=v[2], stride=v[3],
|
17 |
+
padding=v[4])
|
18 |
+
layers.append((layer_name, conv2d))
|
19 |
+
if layer_name not in no_relu_layers:
|
20 |
+
layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))
|
21 |
+
|
22 |
+
return nn.Sequential(OrderedDict(layers))
|
23 |
+
|
24 |
+
class bodypose_model(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(bodypose_model, self).__init__()
|
27 |
+
|
28 |
+
# these layers have no relu layer
|
29 |
+
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
|
30 |
+
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
|
31 |
+
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
|
32 |
+
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
|
33 |
+
blocks = {}
|
34 |
+
block0 = OrderedDict([
|
35 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
36 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
37 |
+
('pool1_stage1', [2, 2, 0]),
|
38 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
39 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
40 |
+
('pool2_stage1', [2, 2, 0]),
|
41 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
42 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
43 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
44 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
45 |
+
('pool3_stage1', [2, 2, 0]),
|
46 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
47 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
48 |
+
('conv4_3_CPM', [512, 256, 3, 1, 1]),
|
49 |
+
('conv4_4_CPM', [256, 128, 3, 1, 1])
|
50 |
+
])
|
51 |
+
|
52 |
+
|
53 |
+
# Stage 1
|
54 |
+
block1_1 = OrderedDict([
|
55 |
+
('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
|
56 |
+
('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
|
57 |
+
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
|
58 |
+
('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
|
59 |
+
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
|
60 |
+
])
|
61 |
+
|
62 |
+
block1_2 = OrderedDict([
|
63 |
+
('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
|
64 |
+
('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
|
65 |
+
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
|
66 |
+
('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
|
67 |
+
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
|
68 |
+
])
|
69 |
+
blocks['block1_1'] = block1_1
|
70 |
+
blocks['block1_2'] = block1_2
|
71 |
+
|
72 |
+
self.model0 = make_layers(block0, no_relu_layers)
|
73 |
+
|
74 |
+
# Stages 2 - 6
|
75 |
+
for i in range(2, 7):
|
76 |
+
blocks['block%d_1' % i] = OrderedDict([
|
77 |
+
('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
|
78 |
+
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
79 |
+
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
80 |
+
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
81 |
+
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
82 |
+
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
|
83 |
+
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
|
84 |
+
])
|
85 |
+
|
86 |
+
blocks['block%d_2' % i] = OrderedDict([
|
87 |
+
('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
|
88 |
+
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
89 |
+
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
90 |
+
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
91 |
+
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
92 |
+
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
|
93 |
+
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
|
94 |
+
])
|
95 |
+
|
96 |
+
for k in blocks.keys():
|
97 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
98 |
+
|
99 |
+
self.model1_1 = blocks['block1_1']
|
100 |
+
self.model2_1 = blocks['block2_1']
|
101 |
+
self.model3_1 = blocks['block3_1']
|
102 |
+
self.model4_1 = blocks['block4_1']
|
103 |
+
self.model5_1 = blocks['block5_1']
|
104 |
+
self.model6_1 = blocks['block6_1']
|
105 |
+
|
106 |
+
self.model1_2 = blocks['block1_2']
|
107 |
+
self.model2_2 = blocks['block2_2']
|
108 |
+
self.model3_2 = blocks['block3_2']
|
109 |
+
self.model4_2 = blocks['block4_2']
|
110 |
+
self.model5_2 = blocks['block5_2']
|
111 |
+
self.model6_2 = blocks['block6_2']
|
112 |
+
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
|
116 |
+
out1 = self.model0(x)
|
117 |
+
|
118 |
+
out1_1 = self.model1_1(out1)
|
119 |
+
out1_2 = self.model1_2(out1)
|
120 |
+
out2 = torch.cat([out1_1, out1_2, out1], 1)
|
121 |
+
|
122 |
+
out2_1 = self.model2_1(out2)
|
123 |
+
out2_2 = self.model2_2(out2)
|
124 |
+
out3 = torch.cat([out2_1, out2_2, out1], 1)
|
125 |
+
|
126 |
+
out3_1 = self.model3_1(out3)
|
127 |
+
out3_2 = self.model3_2(out3)
|
128 |
+
out4 = torch.cat([out3_1, out3_2, out1], 1)
|
129 |
+
|
130 |
+
out4_1 = self.model4_1(out4)
|
131 |
+
out4_2 = self.model4_2(out4)
|
132 |
+
out5 = torch.cat([out4_1, out4_2, out1], 1)
|
133 |
+
|
134 |
+
out5_1 = self.model5_1(out5)
|
135 |
+
out5_2 = self.model5_2(out5)
|
136 |
+
out6 = torch.cat([out5_1, out5_2, out1], 1)
|
137 |
+
|
138 |
+
out6_1 = self.model6_1(out6)
|
139 |
+
out6_2 = self.model6_2(out6)
|
140 |
+
|
141 |
+
return out6_1, out6_2
|
142 |
+
|
143 |
+
class handpose_model(nn.Module):
|
144 |
+
def __init__(self):
|
145 |
+
super(handpose_model, self).__init__()
|
146 |
+
|
147 |
+
# these layers have no relu layer
|
148 |
+
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
|
149 |
+
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
|
150 |
+
# stage 1
|
151 |
+
block1_0 = OrderedDict([
|
152 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
153 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
154 |
+
('pool1_stage1', [2, 2, 0]),
|
155 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
156 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
157 |
+
('pool2_stage1', [2, 2, 0]),
|
158 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
159 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
160 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
161 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
162 |
+
('pool3_stage1', [2, 2, 0]),
|
163 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
164 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
165 |
+
('conv4_3', [512, 512, 3, 1, 1]),
|
166 |
+
('conv4_4', [512, 512, 3, 1, 1]),
|
167 |
+
('conv5_1', [512, 512, 3, 1, 1]),
|
168 |
+
('conv5_2', [512, 512, 3, 1, 1]),
|
169 |
+
('conv5_3_CPM', [512, 128, 3, 1, 1])
|
170 |
+
])
|
171 |
+
|
172 |
+
block1_1 = OrderedDict([
|
173 |
+
('conv6_1_CPM', [128, 512, 1, 1, 0]),
|
174 |
+
('conv6_2_CPM', [512, 22, 1, 1, 0])
|
175 |
+
])
|
176 |
+
|
177 |
+
blocks = {}
|
178 |
+
blocks['block1_0'] = block1_0
|
179 |
+
blocks['block1_1'] = block1_1
|
180 |
+
|
181 |
+
# stage 2-6
|
182 |
+
for i in range(2, 7):
|
183 |
+
blocks['block%d' % i] = OrderedDict([
|
184 |
+
('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
|
185 |
+
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
|
186 |
+
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
|
187 |
+
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
|
188 |
+
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
|
189 |
+
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
|
190 |
+
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
|
191 |
+
])
|
192 |
+
|
193 |
+
for k in blocks.keys():
|
194 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
195 |
+
|
196 |
+
self.model1_0 = blocks['block1_0']
|
197 |
+
self.model1_1 = blocks['block1_1']
|
198 |
+
self.model2 = blocks['block2']
|
199 |
+
self.model3 = blocks['block3']
|
200 |
+
self.model4 = blocks['block4']
|
201 |
+
self.model5 = blocks['block5']
|
202 |
+
self.model6 = blocks['block6']
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
out1_0 = self.model1_0(x)
|
206 |
+
out1_1 = self.model1_1(out1_0)
|
207 |
+
concat_stage2 = torch.cat([out1_1, out1_0], 1)
|
208 |
+
out_stage2 = self.model2(concat_stage2)
|
209 |
+
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
|
210 |
+
out_stage3 = self.model3(concat_stage3)
|
211 |
+
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
|
212 |
+
out_stage4 = self.model4(concat_stage4)
|
213 |
+
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
|
214 |
+
out_stage5 = self.model5(concat_stage5)
|
215 |
+
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
|
216 |
+
out_stage6 = self.model6(concat_stage6)
|
217 |
+
return out_stage6
|
218 |
+
|
219 |
+
|
models/pose/util.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def padRightDownCorner(img, stride, padValue):
|
8 |
+
h = img.shape[0]
|
9 |
+
w = img.shape[1]
|
10 |
+
|
11 |
+
pad = 4 * [None]
|
12 |
+
pad[0] = 0 # up
|
13 |
+
pad[1] = 0 # left
|
14 |
+
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
15 |
+
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
16 |
+
|
17 |
+
img_padded = img
|
18 |
+
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1))
|
19 |
+
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
20 |
+
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1))
|
21 |
+
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
22 |
+
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1))
|
23 |
+
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
24 |
+
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1))
|
25 |
+
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
26 |
+
|
27 |
+
return img_padded, pad
|
28 |
+
|
29 |
+
|
30 |
+
# transfer caffe model to pytorch which will match the layer name
|
31 |
+
def transfer(model, model_weights):
|
32 |
+
transfered_model_weights = {}
|
33 |
+
for weights_name in model.state_dict().keys():
|
34 |
+
transfered_model_weights[weights_name] = model_weights[
|
35 |
+
".".join(weights_name.split(".")[1:])
|
36 |
+
]
|
37 |
+
return transfered_model_weights
|
38 |
+
|
39 |
+
|
40 |
+
# get max index of 2d array
|
41 |
+
def npmax(array):
|
42 |
+
arrayindex = array.argmax(1)
|
43 |
+
arrayvalue = array.max(1)
|
44 |
+
i = arrayvalue.argmax()
|
45 |
+
j = arrayindex[i]
|
46 |
+
return i, j
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
boto3==1.24.61
|
2 |
triton==2.0.0
|
3 |
-
diffusers==0.
|
4 |
fastapi==0.87.0
|
5 |
Pillow==9.3.0
|
6 |
redis==4.3.4
|
@@ -32,7 +32,7 @@ scikit-image
|
|
32 |
omegaconf
|
33 |
webdataset
|
34 |
git+https://github.com/cloneofsimo/lora.git
|
35 |
-
https://comic-assets.s3.ap-south-1.amazonaws.com/packages/mmcv_full-1.7.0-
|
36 |
python-dateutil==2.8.2
|
37 |
PyYAML
|
38 |
torchvision
|
|
|
1 |
boto3==1.24.61
|
2 |
triton==2.0.0
|
3 |
+
diffusers==0.19.0
|
4 |
fastapi==0.87.0
|
5 |
Pillow==9.3.0
|
6 |
redis==4.3.4
|
|
|
32 |
omegaconf
|
33 |
webdataset
|
34 |
git+https://github.com/cloneofsimo/lora.git
|
35 |
+
https://comic-assets.s3.ap-south-1.amazonaws.com/packages/mmcv_full-1.7.0-cp39-cp39-linux_x86_64.whl
|
36 |
python-dateutil==2.8.2
|
37 |
PyYAML
|
38 |
torchvision
|